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Abstract

Social media (SM) data provides a vast record of humanity’s everyday thoughts, feelings, and
actions at a resolution previously unimaginable. Because user behavior on SM is a reflection of
events in the real world, researchers have realized they can use SM in order to forecast, making
predictions about the future. The advantage of SM data is its relative ease of acquisition, large
quantity, and ability to capture socially relevant information, which may be difficult to gather
from other data sources. Promising results exist across a wide variety of domains, but one will
find little consensus regarding best practices in either methodology or evaluation. In this
systematic review, we examine relevant literature over the past decade, tabulate mixed results
across a number of scientific disciplines, and identify common pitfalls and best practices. We find
that SM forecasting is limited by data biases, noisy data, lack of generalizable results, a lack of
domain-specific theory, and underlying complexity in many prediction tasks. But despite these
shortcomings, recurring findings and promising results continue to galvanize researchers and
demand continued investigation. Based on the existing literature, we identify research practices
which lead to success, citing specific examples in each case and making recommendations for best
practices. These recommendations will help researchers take advantage of the exciting possibilities
offered by SM platforms.

Introduction

“Forecasting is a difficult business, particularly when it is about the future.”
– Yogi Berra

Now more than ever before, companies, governments, and researchers can gather and access
data about people on a massive scale. Putting a finger on the pulse of public opinion is made
increasingly possible thanks to the rise of social media (SM; for a more comprehensive review of
SM platforms see [15, 107]). SM are Internet-enabled platforms that provide users with a
persistent online identity and means of sharing information with friends, families, coworkers, and
other users. There are many different SM platforms, each of which targets a different aspect of
what users want or need: e.g., LinkedIn targets professional networking activities, Facebook
provides a means of connecting friends and family, and Twitter provides a platform from which to
quickly broadcast thoughts and ideas. These platforms are incredibly popular: as of June 2016,
Facebook sees an average of 1.13 billion daily users, including nearly half the populations of the
United States [24] and Canada [28] logging in every day [70].
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Being so widely used, SM platforms generate massive quantities of data. According to [106], in
2013 users were posting an average of over 500 million tweets every day. While traditional data
sources and records of daily human activity, such as newspapers and broadcast media, are often
constrained by national, cultural, and linguistic boundaries, SM platforms are generally consistent
provided a user has access to the Internet. Moreover, traditional media requires time to compile
relevant information for publication, while SM data is generated in real time as events take place.

All of this information can be collected and mined by virtually anyone who wishes to use it.
As far back as 2009, the United States Geological Survey (USGS) began investigating the
possibility of using SM data to detect earthquakes in real time [69]. Information about an
earthquake spreads faster on SM than the earthquake itself can spread through the crust of the
Earth [104]! Similarly exciting work in forecasting with SM also exists; EMBERS is a currently
deployed system for monitoring civil unrest and forecasting events such as riots and protests [162].
Using a combination of SM and publicly-available, non-SM data, they are able to predict not just
when and where a protest will take place, but also why a protest may occur. These findings have
enticed researchers into exploring the possibilities opened by SM data, but there remain many
unanswered questions. If SM is useful for detecting real-time events, can it be used to make
predictions about the future? What limitations does forecasting with SM data face? What
methods lead researchers to positive results with SM data?

For all of its exciting advantages—SM platforms are global, multilingual, and cross-cultural—a
deep pessimism surrounds SM data analysis [167, 204]. SM is noisy and the data derived from SM
are of mixed quality: for every relevant post there may be millions that should be ignored.
Learning with SM data sometimes requires robust statistical models capable of handling massive
quantities of SM data, but here too there are additional open questions about the effectiveness of
such data-driven models. Consider the case of Facebook, who in 2014 launched a trending topics
feature later revealed to be hand-curated by Facebook employees [160]. Facebook used an
algorithm to scour the site, utilizing their own SM platform’s data to detect trending topics that
were then looked over by humans for quality assurance. Facebook later removed human curators
from the process—following the idealized trend of SM data analysis—and relied entirely on their
data-driven algorithms. Within days Facebook’s system had posted libelous articles and explicit
material [187]. If a SM platform as large as Facebook is unable to use its own data to detect
aberrant trending topics, what are the prospects for other organizations?

Yet, in spite of anecdotes like this, researchers continue to investigate how best to make use of
SM data. Preliminary results do largely show positive findings as we discuss in much greater
detail below. If SM users are reacting to and talking about events in real time, one might imagine
that users are also talking about and reacting to events that they anticipate will happen in the
future. This raises the interesting possibility that SM data might be useful for forecasting events:
making predictions about events that have yet to occur. Not only have researchers begun to
investigate this line of questioning, earlier review articles on SM forecasting showcase early
positive examples of predictive success [100, 146, 176, 216]. Across the board preliminary studies
show that SM could be used to predict the future. At the same time, early findings have been
controversial and warrant some amount of skepticism and caution [100,176,216]. The field is in its
infancy, methodologies are scattered, common best practices are nonexistent, and true replication
of studies is near-impossible due to data sharing concerns [204].

Previous reviews laid out a number of possible issues with SM forecasting and identified areas
where forecasting had or had not been successful, but had little to say about what best practices
researchers might follow in order to better make use of SM data. Identifying all of the pitfalls
associated with SM data is far beyond the scope of this literature review, therefore we choose to
focus on the following general questions:

Q1: Can SM be used to make accurate predictions about current and future events?

Q2: Across domains, what distinguishes SM prediction successes from prediction failures?

While previous reviews were cautiously optimistic in addressing Q1, by covering a much larger
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body of literature, we aim to find a more comprehensive answer. We further address Q2 in order
to give researchers an idea of how they might best approach their own SM forecasting tasks. The
contents of the rest of this review are organized as follows: the background section provides a
general overview of SM and the interest it has generated, clarifies the meaning of prediction and
forecasting, and describes some general challenges faced by researchers. We describe which general
topics are covered in the literature review and methods and requirements for study inclusion.
Next, we present our findings split by prediction topic, focusing on elections, economics, public
health, threat detection, and user characteristics, addressing research questions (Q1) and (Q2)
above. Further, each results section includes a table of reviewed articles that lists the primary
author, topic, data source, collection method, size, primary data features, algorithmic task,
success rate, and validation method of the section’s constituent reviewed articles.

Our principle research questions (Q1) and (Q2) relate to how well SM data can be used to
predict future (or otherwise unknown) real-world states, i.e., forecasting. We also note that many
papers focus on identifying the current state of the world, i.e., nowcasting. Both types of papers
are included in our analysis for two principle reasons. First, the state of the world is often
persistent over time, meaning that current predictions may overlap with future predictions, e.g.,
the case of predicting a user’s ethnicity. Second, predicting the future is likely to be more difficult
than predicting current states because of increased temporal distance [12]. The ability (or
inability) of existing research to nowcast current or immediate future states is therefore an upper
bound on how well forecasting states further in the future might perform.

Background

The use of SM data for modeling real-world events and behavior has seen increased interest since
its early appearances in academic work around 2008. Fig 1 illustrates this growth, with nearly
20,000 articles having been published in 2015; meanwhile, 2016 is set to well exceed that number.
This rise in popularity is commensurate with the newly coalescing field of computational social
science [112]. Many sociological hypotheses were previously untestable due to difficulties in
obtaining data. With the advent of SM, this is no longer the case, as myriad facets of human
interaction are recorded by millions of people across the web. At the same time, this data is not
always a complete cross section of what a researcher might hope to see. SM usage varies by age,
culture, socioeconomic status, gender, and race [155]. Still, positive findings and interest in the
fundamental dynamics of SM platforms is a likely culprit for this exponential growth in
popularity, particularly for social scientists [15, 79, 86, 107, 146, 204, 218].

Forecasting and Predictive Modeling

Standard examples of physical laws and theories (e.g., Newton’s Laws or the Ideal Gas Law) have
provided the sciences with a means of forecasting or predicting natural phenomena. Specifically,
given a sequence of observations related to the state of some system, prediction entails the
accurate and reproducible state estimation of that system for some amount of time into the future
up to and including the present. For a simple physical system, we might use Newton’s Laws to
derive a model of the position and velocity for a mass on a spring (i.e., Hooke’s Law). Models
which build off a theoretical understanding of the underlying system are considered theory-driven
models. In many cases, however, we lack a full or even partial theoretical understanding of the
underlying system. For instance, it would be quite difficult to create an entirely theory-driven
model to forecast when a user is going to make their next SM post about an unforeseeable topic.
Data-driven models learn predictive relationships from data directly, for instance by looking at
previous posting patterns for a user. We distinguish between theory- and data-driven models,
although in practice models often incorporate aspects of both methods. Data-driven models are
often used to gain insight into the fundamental laws governing the underlying system: the authors
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Fig 1. Number of articles published per year containing the phrase “social media” and the
keywords “data” and “prediction” according to Google Scholar, excluding patents and case law.

of [189] demonstrate how to recover or learn Hooke’s Law directly from sensor data without
knowledge of Newton’s Laws.

Underlying Complexity of SM-based Models

It is clear that forecasting should be possible to varying degrees when there are direct causal links,
as in the case of the physical systems described above, whether these links are identified through
theory-driven hypothesis testing, naive data analysis, or both. If current weather patterns impact
future weather, that relationship should allow for forecasting. If current behaviors impact future
chance of illness, that relationship should likewise allow for forecasting. Yet in almost all cases,
SM posting does not directly impact the real world system we care about and the real world
system does not directly impact SM posts or behavior (which is generally the relationship being
modeled for SM forecasting). Instead, physical systems in the real world and SM users interact
with one another and then users interact with SM. We demonstrate these relations in Fig 2. Each
arrow represents a (not necessarily causal) relationship between two systems which can be
modeled, where direction matters. Forecasting can be accomplished by using theoretical
knowledge to understand the underlying mechanisms which produce a link between SM behaviors
and real-world outcomes, or this relationship can be modeled directly from the data.

Prediction becomes somewhat more difficult as the gap between any two of these factors
increases and their relationships becomes less direct between one another. While many users may
be influenced by or be an influencer of a stock market, for example, predicting the behavior of a
stock market is already known to be an all but insurmountable task both empirically [14, 123] and
theoretically [127]. While focused SM data analysis may yield insight into stock market behavior,
SM users (corporate or otherwise) are unrepresentative of the players within a stock market and
trades are often purposefully obfuscated [30]. This is to say that SM does not significantly overlap
or impact a majority of the variables governing the physical system, namely a stock market in this
case. The difficulty of establishing SM prediction for real-world events is a reflection of these
underlying processes which vary between tasks and are often only poorly understood or not taken
into account.

A significant manifestation of an event on SM, however, does not appear to be a sufficient
condition for successful prediction. Take for instance the 2014 World Cup; the tournament saw
global SM presence representing participating teams from around the world [48, 62, 81, 161, 217].
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Fig 2. Interactivity of factors leading to SM forecasting ability. For example, users may observe
the weather around them and post those observations on Twitter. A less common example would
be weather directly effecting the social media platform, via weather-related outages.

An attempt to predict match outcomes utilizing Twitter data, [161] failed to perform better than
random chance for early tournament matches, and under-performed popular sports analysis
agencies’ predictions beyond quarter-final matches. Much of any given team’s SM traffic reflected
the development of a game and general attempts to rally fan pride [217], but the SM platform’s
activity itself had little demonstrable bearing on the outcome of the game. Indeed, apart from a
handful of sports journalists broadcasting informed a priori analysis, the majority of fans are not
directly involved in the game and are merely spectators possibly explaining poor predictive
performance [161]. On the other hand, as spectators, SM users do post information which can be
used to identify what is happening as a match progresses, i.e. nowcasting [48, 133].

Ultimately, additional variables in complex prediction tasks increase the gap between each of
the factors in Fig 2. Simpler queries with direct relevance to how users interact with SM and the
physical system might be expected to enjoy better predictive success. Consider the case of
predicting when soccer matches like the above will occur. The authors of [93] achieve an accuracy
of ± 8 hours up to 6 days in advance of a game. This could be attributed to the fact that
attending a game directly impacts all users involved—players, journalists, and fans alike—where
fans will broadcast their planned attendance and support on SM in addition to teams, players,
and journalists publicizing the event [48]. Additionally, in some cases SM users have direct
knowledge related to the forecasting task, e.g., they do know when a game will take place well
ahead of time. Such instances should be much easier to forecast than cases where any knowledge
on the part of SM users is indirect, as in forecasting match winners, where it could be argued that
SM users are privy to some relevant information, but have no direct knowledge of the outcome.

The SM User-Sensor

Users themselves further complicate matters. Consider the process for detecting an event with a
traditional sensor network in Fig 3a taken from [47]: 1) some physical event occurs, 2) sensors
acquire a measurement, 3) the sensors record the measurement, and 4) the system stores the
measurement. Although sensor readings may be correlated, the sensors do not typically interact
with one another directly. SM users can be thought of as sensors, but the purpose of the SM
platform is specifically to allow interaction between different users. Consider the parallel process
of event responses in a SM sensor network in Fig 3b: 1) some physical event occurs, 2) user
receives stimulus, 3) user communicates response, 4) system routes message, 5) other users receive
message, 6) users communicate response, and 7) system routes message.

Consider an idealized case of a traditional sensor network where one sensor is reporting false
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(a) A traditional sensor network (b) A SM sensor network

Fig 3. Comparison of sensor data routing: traditional vs SM sensor network, adapted from [47].

information. In such a case, the incorrect sensor’s data can be compared against the data received
from other sensors and because the sensors do not interact with one another, a single incorrect
sensor will not cause a cascade of false information. On SM, however, such information cascades
can and do occur. Consider the case of the 2013 Boston Marathon bombing. Immediately
following the event, users on various SM platforms, in particular Reddit, began an attempt to
identify the bombers. As SM users shared information with one another they mistakenly settled
on Sunil Tripathi as the primary suspect. Tripathi had been missing for a month by the time the
bombing took place and had in fact taken his own life [198]. Because SM users react not just to
outside events but also to posts from other SM users, it is possible that a user’s perception of
outside events is influenced by other users, essentially introducing the possibility of sensors
biasing other sensors. Besides false accusations, this leaves SM sensors susceptible to other
well-studied phenomena such as group polarization [44, 213].

Open Challenges for SM Forecasting

This is all to say that while SM data holds tremendous potential value, its useful application is
not necessarily a trivial matter. Forecasting techniques in the natural sciences, both theory- and
data-driven, are relevant, but SM challenges researchers to find new ways to apply them.
Aggregation techniques from traditional sensor networks are relevant, but SM challenges
researchers to find new ways to augment them. Because of these difficulties, Q1 and Q2 are
intricately linked. To be able to generate valid, reliable predictions (Q1) researchers must first
identify the methods through which myriad challenges in SM research may be addressed (Q2).
These difficulties include noisy data, possible biases, a rapidly-shifting SM landscape which
impedes generalizability, and the need for domain-specific theory to wrap everything together. In
order to address whether these challenges can be overcome, it is necessary to examine the
literature in a systematic fashion.

Methods

In this section we detail the methods used in our systematic literature review. We define the
scope of the review, describe how studies were collected and reviewed for inclusion, and discuss
potential sources of study bias.
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Task Overview

While many researchers have acknowledged the potential usefulness of collecting and analyzing
SM data as a way to study social phenomena, much past work has concentrated on predicting
various online aspects of social networks, in particular virality [205] and information cascades
(message propagation) [185]. We restrict ourselves to reviewing work that focuses on using online
data to predict offline—viz. physical world—events. We refer to these as ‘real-world phenomena.’

Previous reviews have covered similar ground but describe results without clearly identifying
what aspects of each domain or methodology led to success or failure of SM
prediction [15, 100, 176, 216]. For instance, [100] reviews the literature in 2013, and makes some
very general statements regarding what techniques lead SM papers to demonstrate successful
results. Unfortunately, the authors collapse these generalizations across all research domains,
making it difficult to discern what techniques might be best applied in particular disciplines. A
taxonomy of predictive models used in SM research is provided by [176] and explores more specific
issues by content domain, but looks at specific case-in-point examples: influenza, product sales,
stock market, and electoral predictions. In a like manner [216] covers a small set of content areas
and also is unable to draw strong conclusions. All three reviews come to the basic conclusion that
SM should be able to make accurate predictions about current and future real-world events (Q1),
but are either somewhat pessimistic or unclear about how this might be feasibly accomplished.
Because of the limited scope of previous reviews, no one in the literature has adequately
addressed our second primary research question (Q2): what distinguishes success from failure in
studies of SM prediction across all domains?

As can be seen from Fig 1, a great deal of research on SM prediction has been published since
the last round of literature reviews in 2013. We take advantage of this greater body of literature
in order to expand our review, drawing more specific conclusions about what leads to successful
predictions. In order to understand how SM prediction functions both within and across domains,
we divide this review on the basis of previously well-trodden disciplines. These disciplines
represent the most active research areas where SM data is being used to predict real-world
phenomena.

We first provide a general outlook for each discipline as well as the specific types of prediction
tasks for which researchers in these areas use SM data. We present a table of articles including
the primary author, topic, data source, collection method, size, primary data features, algorithmic
task, success rate, and validation method of the section’s constituent reviewed articles. We then
discuss general findings from each paper, noting in particular which specific factors appear to
either reduce or increase the success found by researchers in that domain (Q2). Finally, we
compare the existing literature in each field across disciplines to identify which methodologies are
most promising by demarcating specific examples of successful and unsuccessful research practices.

Data Collection

To perform a systematic literature review in a research area making rapid advancements, it is
important to review all topic-relevant papers regardless of their place of publication. We follow
the guidelines set by PRISMA with our search outline described in Fig 4 [138]. We first conducted
a database search in October 2016 of IEEE and ACM for articles published since 2010 which
included the terms“social media” and “prediction” as well as for “forecasting” in the case of IEEE.
This returned a total of 905 search records. We augmented this number by backward tracking
references from previous literature reviews on SM forecasting as well as by searching articles from
the following conference proceedings and their associated workshops from 2010 through August
2016: ACL, EMNLP, EACL, NAACL, WWW, KDD, NIPS, WSDM, ICWSM, CHI, ASONAM,
AAAI, IJCAI, and SocInfo. This resulted in an additional 86 records.

After removing duplicates this left 958 abstracts to screen. We included only those articles
which attempted to use SM data to make real-world predictions. This included making predictions
about the state of the world currently, which we refer to as “nowcasting”, or making predictions
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958 Records screened

after duplicates removed

234 Full-text articles

accessed for eligibility

106 Studies included

in systematic review

724 Records excluded

128 Full-text articles excluded

905 Records identified through

IEEE & ACM database search

82 Additional records

identified through other sources

Fig 4. PRISMA Flow Diagram: 958 abstracts were gathered through a database search of IEEE
and ACM along with a search of relevant conference proceedings. Of those, 234 full-text articles
were screened for eligibility resulting in a final set of 106 studies included in the final systematic
review.

about future states of the world, which we refer to as “forecasting”. Articles were excluded if they
did not either make predictions or attempt to discover relationships with real-world events or
characteristics, e.g., speculative or theoretical articles. We purposefully excluded all articles which
use SM data only to predict future SM data, e.g., research on “virality” which predicts the spread
of SM posts on SM platforms. After the abstract screening process, this left 234 full-text articles
which needed to be assessed for inclusion. Articles were excluded for any of the above reasons as
well as for failing to report concrete quantitative results, lacking real-world ground truth data,
being primarily a review article, or possessing serious and obvious methodological concerns. This
left a remaining 106 articles for inclusion in the systematic literature review.

For each of the examined full-text articles, we collected information regarding the authors,
topic of the study, SM platform(s) analyzed, data size (e.g. number of users, posts, images), SM
features used in their analyses, the type of prediction task (e.g. classification, regression), their
principle success metric and results. Because of privacy concerns, data collection methods are not
always published in full and therefore where data size was not made publicly available this is
noted. SM features were classified into a number of discrete categories including user metadata,
n-gram counts, semantic (NLP) features, social network features, spatial or geolocation features,
post volume, user behavioral features, and other non-SM features. Where multiple evaluation
metrics were reported, we focus on those results primarily highlighted by the author(s) or which
best represent the best level of performance achieved.

Study Bias

For researchers hoping to make use of SM data for their own prediction tasks, we must qualify our
observations by noting that we are unable to provide a systematic analysis of work which has not
been published. Bias to publish studies with positive results necessarily taints our view of what
SM can accomplish [167]. There may well be domains where SM forecasting has been attempted,
failed, and the results were not published. Because of our ignorance in these matters, we can
make only reasoned assumptions about the possibility of success in domains not represented in the
current review.

Further, the selection of current studies is biased in terms of which SM platforms have been
studied. By far the most studied platform has been Twitter, due in large part to the ease of
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acquiring its data [146]. Much of the research on Twitter may not be applicable to alternative SM
platforms. Although images play a crucial role in SM they are particularly understudied and
therefore we can say little about their possible predictive value [5, 98, 158, 208, 215].

Likewise, current research has largely focused on SM data in English and on events in the
United States. It is unclear how well techniques suited toward the demographics of the U.S. can
be applied to other countries, although where this has been explicitly conducted there have been
largely positive results [59, 172, 188].

Results

Research on SM forecasting spans a very wide range of topics. In order to make better sense of
the existing body of literature, we split our discussion based on five general domains which have
been most explored: Elections and politics, stocks and marketing, public health, threat detection,
and user characteristics. For each of these domains, we discuss the existing literature in terms of
its general topics and methodologies, noting particular successes and failures. We also present a
detailed table which includes a number of characteristics for each study including the article’s
topic, data source and size, features used, the type of task (classification or regression), and their
reported results.

Elections

Research in election prediction has provided significant insight into the capabilities and
limitations of predictive models trained using SM data. Social media platforms have allowed users
to share their opinions and sentiments on a variety of topics, particularly in political discourse,
and this has spurred a great deal of interest in predicting the outcomes of elections and other
policy issues [44]. Political forecasting is one of the first content areas to be explored with SM
data, with a number of studies published by 2010 [82, 144, 191, 206], with a comprehensive
meta-analysis conducted in 2013 [78]. Given that these platforms provide a large archive of how
people have talked about political and social issues, researchers have investigated the utility of
this potentially useful data source in predicting and forecasting various aspects of elections and
political life. In particular, research has largely focused on two specific tasks, forecasting election
outcomes and now- or forecasting public opinion.

Election Outcomes

Many polling companies spend large sums to predict the outcomes of major elections. A great deal
of early work on SM forecasting focused on the predictive power of microblogs, such as Twitter, to
supplement or even replace expensive polling methods. Researchers have investigated a variety of
techniques ranging from extremely simplistic [181, 191, 206] to somewhat more complex [29, 129].
Election forecasting is a very difficult task in part because major elections do not occur very
frequently. Because SM is a relatively recent invention, training can only occur for a very limited
number of past election cycles which may bias forecasting methods. Additionally, if a major
election occurs only once per few years (e.g., 4 years in the case of U.S. presidential elections),
then even legitimate predictors of a past election may well have changed in the intervening years.

The simplest method for forecasting election outcomes is based on assuming the volume of
tweets mentioning a party or candidate reflects the share of the vote that will be
won [102, 181, 191, 206]. These models collect tweets over a period of time before an election and
filter for those tweets which mention a single candidate or party running for office. It is assumed
that if a candidate is mentioned in 55% of these tweets, that they will receive 55% of the vote and
will therefore be the winner. Two of the papers using this method purport to find extremely
promising results [191, 206]. In particular, [191] report that their method for predicting German
election outcomes is almost comparable to traditional polls. Unfortunately, later work has cast
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much doubt on such simple methods. [99] replicate the work of [191] showing that the model relies
crucially on excluding the German Pirate Party, a new party which represented 34.8% of mentions
(almost twice that of the next most mentioned party, the CDU) but which garnered only 2.1% of
the vote. Further, they show that even when excluding the Pirate Party slight changes to the
dates of data collection can lead to major changes in forecasting error. A further difficulty for
volume-based approaches is mentioned by [191], the 3.9% of users who tweet most heavily account
for 44.3% of all political tweets in their data. Despite the possibility of heavy bias, they make no
attempt to correct for this. Poorer performance for the same method is reported by [181]
and [102] who forecast Singaporean and Indian elections, respectively. While Tumasjan reports a
MAE of only 1.65%, the same method achieves 5.23% MAE [181] and 4.5% [102] casting further
doubt on the utility of raw volume analyses.

One method for improving volume-based approaches is to take into account whether a
candidate or party is mentioned in a positive or negative light. A number of studies explore
whether this type of basic sentiment analysis might improve a simple volume-based approach,
finding mixed results [38, 172]. For instance, [172] attempted to augment a basic volume-based
approach by weighting total tweet counts based off the percentage of tweets which positively
mentioned a political party. When combined with other normalization techniques (e.g., counting
only one tweet per user and throwing away tweets mentioning multiple parties) sentiment
improves results. Unfortunately, even after applying sentiment, the results of normalization are
still worse than the basic predictions made by simple counting of mentions. The work of [38]
models U.S. Republican presidential primaries from 2012 and counts a twitter user’s vote as a
function of the number of positive and negative tweets mentioning a candidate. Although they do
not present results for a raw count prediction, their sentiment predictions are not particularly
impressive. Broken down by user demographics, most groups struggle to reach above 50% (i.e.,
random) accuracy. Looking across various data collection time windows, only a single group
(right-leaning Republicans) averages well above 50%, but even then stands at 67.5% averaged
accuracy. The 2012 Republican primaries were also considered by [156] who examined the
difference between traditional raw volume analyses and sentiment analyses which take into
account the popularity of a post. They correlate predictions from blogs, Facebook, Twitter, and
Youtube against traditional Gallup polls and present two major findings. First, blogs and
Facebook provided strong polling forecasts when taking into account a post’s popularity. In
contrast, predictions from Twitter are much poorer overall and actually decrease when taking into
account retweets while Youtube predictions are the worst quality regardless. Second, they
correlate their forecasts against vote totals for each candidate replicating the above findings, with
Facebook and blog posts being better real-world predictors. With such a limited number of data
points to evaluate against, however, it’s unclear whether these positive results might be replicated
elsewhere. Poor findings in the field of election prediction overall suggest that volume of SM posts
alone, with or without sentiment analysis, is likely a poor method for predicting election outcomes.

Prediction based solely on the number of tweets mentioning a candidate is a very rough method
which fails to take into account a variety of other features which might be useful in predicting
election outcomes. For instance, [27] demonstrates that while the number of Facebook friends a
candidate has on election day correctly predicts winners in only 16.7% of the 2011 NZ elections, a
baseline model featuring whether the candidate is an incumbent, whether the friends are of the
same party as the incumbent, and similar control variables achieves accuracy of 88.1%. Adding
Facebook predictions to these control variables improves accuracy to 90.5%. The work of [29]
explores the possibility of modeling election outcomes based on tweet texts. They use a small set
of hand-annotated tweets in order to estimate aggregate (rather than tweet) level sentiments.
Using this method they are able to forecast the outcome of the 2012 French presidential elections
roughly on par with traditional polling. They also forecast 2012 French legislative elections with a
mean absolute error of 2.38 percentage points, as compared to an average of 1.23% for traditional
polls. In predicting Taiwanese elections, [200] attempt to incorporate some notion of the
popularity of SM posts. While this almost halves their prediction error, their results are still poor
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with an MAE of 4.0%. Finally, [61] use the social graph structure of Twitter to forecast national
and EU elections in Sweden. They restrict their analysis to the accounts of politicians with the
idea that politicians should be more likely to win if they are influential in the SM graph, but
report relatively poor correlations (EU r = 0.79; National r = 0.65).

From the existing literature it is clear that elections can be forecasted using SM data, although
not with the same accuracy as traditional polling [29, 191]. Additionally, the types of features
used play a large role in results. Simple volume is a very poor predictor [99] even when
augmented with sentiment and taking into account the number of users rather than raw
tweets [172]. The value of SM above and beyond simple baselines, however, may be relatively
small [27] unless more advanced techniques can be utilized [29].

Public Opinion

An alternative goal for SM researchers has been to use online sentiment to nowcast public opinion,
often with the goal of replicating traditional candidate approval polling. Although traditional
polls are quite valuable sources of information, they are expensive and take time to gather. SM,
on the other hand, can be gathered almost instantaneously, opening the possibility that SM could
provide the ability to forecast ahead of polls. As with forecasting election outcomes, polling fore-
and nowcasting can be built off features such as tweet volume and sentiment [129, 144, 171] or
word choice [29].

In order to forecast both consumer confidence and presidential approval ratings, [144] gather
tweets containing a small set of keywords and then measure tweet sentiment based on a previously
available sentiment lexicon. Using the ratio of positive and negative sentiment on Twitter, they
find a correlation both with Gallup polling on consumer confidence (released every three days) as
well as with the Michigan Index of Consumer Sentiment (ICS) which is released monthly. In
terms of forecasting, they explore the possibility of predicting the next month’s ICS, finding a
correlation of r = 0.78. This is worse than predicting by using previous ICS values (r = 0.80), but
incorporating both Twitter and previous ICS features improves the correlation marginally
(r = 0.81). Correlations are also reported by [144] in comparing Twitter sentiment about
President Obama with Gallup job approval ratings, but [129] replicates these results on a slightly
different range of dates and finds much poorer performance with the same method (r = 0.22 vs.
r = 0.73). In order to improve their results, [129] decide not to filter only on tweets including the
word “Obama”, instead creating a political tweet classifier. Further, rather than using a
keyword-based sentiment lexicon, as in [144], they create a supervised classifier which learns what
vocabulary is associated with positive and negative sentiment based on the emoticons used in
political tweets. Correlating the resulting sentiment ratio with Gallup polls, they report a final
correlation of r = 0.64. Unfortunately, it is unclear whether this represents an advantage over
simply using previous Gallup polls to forecast future poll results.

One difficulty in fore- and nowcasting public opinion using sentiment comes from the fact that
not only are there a range of machine learning techniques which could be applied, but there are
also any number of aggregation functions which could be used to represent sentiment. For
instance, one might consider only the total number of tweets positively mentioning an entity.
Alternatively, one could consider the ratio of positive to negative mentions. A wide variety of
these functions are considered by [171], who use tweets to nowcast public opinion regarding five
Portuguese politicians during the Portuguese bank bailout (2011-2014). They find multiple
combinations of regression algorithms and sentiment functions which all converge on a similar
level of performance, MAE 0.63%. In contrast to other work in the field, this represents a level of
nowcasting performance which outperforms simply using previously published public opinion polls.

Given the conflicting results for both predicting election outcomes and polling data, does SM
hold any power in predicting political outcomes? A combination of meta-analyses [78], literature
reviews [76, 176], and editorials [75, 77, 82] have argued against the effectiveness of the predictions
made above. Attempting to reproduce some of the above work, [78,134] both fail to show that the
proposed methods can consistently perform better than random chance. Additionally, research
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into election prediction has exhibited a degree of confirmation bias and is subject to the effects of
heavily biased populations [75]. Indeed, in the case of Twitter, the users who choose to engage in
political discourse are quite rare and focusing on these users for prediction tasks introduces
selection bias in all the analyses presented.

Despite an uncertain outlook, [78] remains hopeful that improvements can be made, and more
powerful and useful models can be constructed for effective prediction in this domain. Indeed, in
looking at the summary presented in Table 1, we see that the vast majority of prior work relies on
fairly simple methods, ranging from standard linear models such as linear or logistic regression, to
simple keyword matching. With recent advances in machine learning models, including
ensembling and neural networks, there is a great deal to explore in applying these methods to SM
data for election prediction. In addition to these methodological issues, more work needs to be
done on actually forecasting these election events. That is, elections tend to be regularly
scheduled, recurring events that can be planned for in terms of forming a predictive task.
Launching real-time studies such as this would aid in researchers getting a more holistic picture of
the state-of-the-art without overfitting a model to a validation set in a post-hoc analysis, as
pointed out by [77]. Overall, this area of research has seen a great deal of investment and the
limitations of past studies will likely help inform further research in this area, especially given
recent interest in political polarization and its effect on SM interactions.

Table 1. Summary of Studies on Political Science

Article Topic Data

Source

Data Size Features Task Success Rate

Marchetti
[129]

Approval rating T 476M tweets Semantic Regression r = 0.71 (approval)

O’Conner
[144]

Approval rating T 1B tweets Semantic Regression r = 0.81

Saleiro
[171]

Public Opinion T 239K tweets Semantic Regression MAE 0.63%

Tumasjan
[191]

Election prediction T 104K tweets Semantic, Vol-
ume

Regression MAE 1.65%

Skoric
[181]

Election prediction T 110K tweets Volume Regression MAE 5.23%

Sang
[172]

Election prediction T 28K tweets Volume, Non-
SM

Regression 29% worse than polls

Cameron
[27]

Election prediction T, F Not specified Volume, Non-
SM

Regression Acc. 94.6%

Dokoohaki
[61]

Election prediction T 130K users Social Regression r = 0.65 (Swedish), 0.79
(EU)

Pimenta
[156]

Election prediction T, F,
Y, O

Not specified Social, Volume Regression MAE 5.33% (T), 1.64%
(F), 10.42% (Y), 1.67%
(O)

Wang
[200]

Election prediction O 27K posts Sentiment, Vol-
ume

Regression MAE 4.0%

Khatua
[102]

Election prediction T 0.6M tweets Volume Regression MAE 4.5%

Volkova
[196]

Political party affil-
iation

T 1K users N-gram, Social Classification Acc. 99.9%

Ceron
[29]

Election prediction,
approval rating

T, O 430K tweets Semantic Regression MAE 2.4% (election),
MAE 8-10% (approval)

T = Twitter, F = Facebook, Y = Youtube, FR = Flickr, O = Blogs, other
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Stocks, Marketing, and Sales

Stocks

Of all SM forecasting tasks related to economics, predicting fluctuations in the stock market has
been the most studied by far. Early work focused largely on predicting whether aggregate stock
measures such as the Dow Jones Industrial Average (DJIA) would rise or fall on the next day, but
forecasting can also involve making more detailed predictions, e.g., forecasting market returns or
making predictions for individual stocks. The task is well studied outside of social media with a
general consensus that forecasting is very difficult [14, 123, 127]. As in the case of elections, most
research has focused on using general SM sentiment to make forecasts [22, 145, 147, 163, 223]
although some papers investigate more nuanced models that learn the relationship between how
individuals talk and market returns [35, 126].

The simplest task for stock market prediction is deciding whether the following day will see a
rise or fall in stock prices. Comparison between studies is complicated by the fact that stock
market volatility, and thereby the difficulty of prediction, may vary over time periods. High
accuracy on this task was reported by [22], using sentiment analysis to achieve an accuracy of
87%. They find that measures of “calm” on Twitter along with DJIA numbers from the previous
three days provide the best up/down predictions. Further adding the emotion “happy” reduces
rise/fall accuracy to 80% but does reduce error in terms of forecasting absolute DJIA values.
Importantly, they find that positive/negative sentiment analysis through the popular
OpinionFinder tool [207] leads to no improvement over just using previous DJIA values. Their
results are replicated by [130] and who forecast up/down movement for the French stock market
with 80% accuracy. Removing sentiment, [128] use Tweets to forecast S&P500 movements with
much lower accuracy (68%). Building on the techniques of [22], [163] uses an alternative sentiment
analysis technique which is explicitly trained to learn what words on Twitter signal positive and
negative sentiment. This does better than the OpinionFinder results reported by [22], achieving a
rise/fall accuracy of 90.8% on the DJIA as compared to 60% when using historical data alone. A
similar F1 score of 0.85 was reported by [145] when using sentiment from financial tweets rather
than Twitter as a whole, while [35] reported slightly worse rise/fall accuracy (81%) in forecasting
the Chinese stock market. Sentiment alone is not enough for good stock market forecasting. In
particular, [157] make use of a dictionary-based sentiment method similar to the one used by [22].
Although their methodology does not appear profoundly different, their up/down classification
performance is much worse with an accuracy of 64% on the DJIA, barely above the performance
based on historical DJIA data reported by [22].

Stock market forecasts can also be made in terms of predicting the actual value of a stock or
index rather than simply whether it will rise or fall. Evaluating both tasks, [163] found that the
best rise/fall accuracy does not lead to the best accuracy in forecasting stock values. In particular,
while the emotion “calm” works well in predicting rise/fall, the addition of the emotion “happy”
both reduces rise/fall accuracy while increasing more fine-grained prediction. The choice of
particular emotions for any analysis is emphasized by [223] who find that most emotions are poor
predictors of future stock values. In their case, they find that both positive and negative emotions
tend to lead to a decrease in stock prices, perhaps linked to the effectiveness of “calm” for [163].
Negative results are provided by [147] who investigate a variety of sentiment techniques to
forecast stock values for nine US tech companies. No technique provides consistent improvements
beyond a historical baseline, although they find Twitter is somewhat predictive of future trade
volume and volatility. By also analyzing performance across a variety of tech companies, as well
as composite indices, [163] similarly found that no method is predictive across all stocks.

More recent work has likewise found somewhat mixed results. Poor performance is reported
by [224] who make use of a more complex, non-Gaussian statistical model. Their model forecasts
the daily % increase or decrease in the DJIA and report a 33% root mean square error, meaning
that average errors are potentially so large that either their methodology or report thereof is
flawed. Building off of the mood analyses of [22], [119] introduce a variation which they use to
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predict actual returns rather than up/down classification. Compared to the relative success
of [163], the emotions used by [119] achieve much poorer results with the mood “sad” providing
the best correlation results but with an r

2 of only 0.40. Lastly, [227] explore the possibility that
noise in SM posts could be reduced by explicitly modeling stakeholders who affect a stock’s price.
To do this they draw from theoretical bases in economics and linguistics to first identify the
features indicative of stakeholders (vs. other users) and then to make predictions based only off of
stakeholder sentiment with r

2 = 0.59.
Taken altogether, work on stock market prediction is largely mixed. While the mood-based

analyses pioneered by [22] have largely proven valuable, slight deviations away from their
methodology have seen much less success indicating that the method itself may be unreliable.
Further, while there has been a great deal of success in forecasting up/down movements in the
stock market, the ability to gauge how large those daily shifts will be is a much more difficult task
and has correspondingly seen less success. Another concern comes from the fact that almost all
work in the area has been built off of [22]. Whether such a method represents the best which can
be achieved from SM data is quite unclear. In particular, there is little evidence to suggest that
SM data is more predictive of stock markets than other readily available predictors.

Marketing

An alternative use for SM forecasting is in the domain of marketing [94]. Although there is a great
deal of work predicting what kinds of topics and products might go viral [8, 115, 202], we focus
instead on a small sample of work which has been done in forecasting real-world outcomes. Very
early work on blog posts demonstrated that blog posts about books showed little predictive power
in determining whether Amazon sales would increase or decrease on the following day, but were
useful in forecasting future sales spikes [87]. The authors speculate that this is because sales
spikes are caused by outside events which are also captured through social media. Work by [37]
shows how modeling latent user properties such as personality traits like openness and
neuroticism can help companies create targeted advertisements. The authors created a Twitter
account which posted travel information and recommendations relevant to users who post about
their travel plans. They demonstrate that aiming advertisements at users with particular
personality traits improves click- and follow-rates by 66% and 87% respectively, representing a
large increase in value for companies.

SM has also been used to study the ability of online projects to successfully crowdfund their
projects through websites like Kickstarter [121, 124]. Proposed projects create a page on
Kickstarter asking users to donate generally small sums to fund the project. Users are enticed
with rewards based on the level of their donation such as early access to the proposed item(s).
Projects have a set fundraising goal as well as a project deadline. User donations are only made if
the sum of all donations is higher than the goal by the time the deadline passes. If funding
reaches the goal by this deadline the project is said to have been successfully funded, while if the
deadline passes without the necessary amount donated the project is said to have failed and no
money is given. In theory, SM should be predictive of crowdfunding success since projects are
expected to succeed based on users sharing information about the project through SM. Work
by [124] predicts whether a project will eventually succeed by making use of features relevant to
the project itself (e.g., the fundraising goal), as well as social activity features (e.g., number of
tweets related to the project), and social graph measures (e.g., average number of followers for
project promoters). Using all of these features for only the first 5% of the project duration [124]
achieved an accuracy of 76% in predicting whether the project will be successful. Similarly,
success was shown by [121] even when just using SM information from the first three days of the
project, achieving an AUC of 0.90, reflecting very high classification performance.
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Movie Ticket Sales

Boosting movie ticket sales is an important task for marketing firms, and this has been studied
specifically when marketing on social media platforms like Twitter. Indeed, the success of the
2016 film “Deadpool”, having broken the record for the highest-grossing R-rated film of all time,
is often attributed to its social media marketing strategy [150].

Previous research linking SM to movie sales has demonstrated somewhat less predictive power
than might have been anticipated. When [136] correlated box office sales for particular movies
with SM information they found only moderate correlations (r2 = 0.29) when using positive
sentiment on blogs along with volume of blog posts. This represents a 12% increase over using the
volume of blog posts, but still is far from impressive. Better results are reported for a
volume-based analyses by [3]. They predict daily box office revenue for movies as well as sales
rank for music albums achieving r

2 = 0.74 and 0.92, respectively. Baseline features such as movie
budget, genre, or number of theaters, which may hold greater predictive value, were not provided
by [136]. Further work on movie sales was done by [186] who monitored official Facebook fan pages
for 50 different movies. They achieve an r

2 of 0.88 in forecasting total box office revenue when
incorporating social network features, essentially modeling the influence of each movie’s fan page,
a significant improvement over using just the number of theaters showing each film (r2 = 0.68).

Much more positive results are reported by [9] who correlate Twitter volume with opening
weekend box office sales achieving r

2 = 0.93 with SM data alone and r
2 = 0.97 when

incorporating SM with the number of theaters showing a film. Again, what is missing from their
analysis is any systematic comparison of SM features with the kinds of non-SM features that
would be used in any serious forecasting attempt. This limits our ability to determine the real
predictive value of SM over-and-above baseline features. Further, a lack of systematic comparisons
between various SM platforms makes it difficult to compare studies against one another or to
know which platforms researchers should focus on in the future.

The relative scarcity of publications in this area of social media data analysis suggests that
this is a rather difficult area of investigation. While many of the studies surveyed here present
positive results, it is worth noting that many of these studies also opt to report correlations
between model predictions and some ground-truth signal. These measures may obscure more
nuanced model behavior as in more controlled machine learning experiments that use more
sophisticated measures such as average precision or ROC area-under-the-curve metrics. At a more
qualitative level, the number of studies focusing on sentiment as a key indicator of stock or sales
performance is striking. This presents many limitations and difficulties given that sentiment
detection is still a somewhat open research area, and much past work casts sentiment as a crude
distinction between positive or negative polarities [83].

Given the overall dearth of work in these areas, it is difficult to assess which of these areas may
hold more promise over the others in terms of future research. In all cases, studies purporting to
predict economic response variables by incorporating social media benefit from additional features
outside social media, such as other economic indicators. This is particularly difficult when
utilizing Twitter data, where the vast majority of tweets that can be collected will not mention a
product of interest or the stock market. These challenges, along with a lack of deep understanding
of how users interact online with respect to economic phenomena, will likely make it necessary to
incorporate data outside social media in order to build accurate models in this application area.

Public Health

Significant effort has been made in utilizing SM and other Internet data for the purpose of
monitoring, predicting, and improving public health. Research on using SM for public health
addresses a wide range of phenomena, including monitoring and forecasting disease outbreaks,
identifying individuals in need of mental health services, and identifying specific adverse drug
effects before they were discovered by the U.S. Food and Drug Administration (FDA) [41, 71, 139].
An overview of how Internet data in general can be used in the public health domain is given
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Table 2. Summary of Studies on Economics

Article Topic Data

Source

Data Size Features Task Success Rate

Chen [37] Advertising T 5.9K users Semantic Regression 66% gain (click rate), 87%
gain (follow rate)

Li [121] Crowdfunding suc-
cess rate

T, F,
K

106K tweets Metadata, N-
gram, Social

Regression AUC 0.90

Lu [124] Crowdfunding suc-
cess rate

T, K Not specified Metadata Classification Acc. 76%

Gruhl
[87]

Product sales rank O 300K blogs N-gram Classification Acc. 63%

Bollen
[22]

Stock market T 9.8M tweets Semantic Classification Acc. 80%

Chen [35] Stock market SW 256K tweets N-gram Classification Acc. 81%
Makrehchi
[126]

Stock market T 2M tweets Semantic Classification 20% gain (returns)

Oh [145] Stock market O 208K blogs Metadata, Se-
mantic, Non-SM

Classification F1 0.85

Mao [128] Stock market T Not specified Volume Classification Acc. 68% (S&P500)
Porshnev
[157]

Stock market T 755M tweets Semantic Classification Acc. 64% (DJIA), 62%
(S&P500)

Martin
[130]

Stock market T 173K tweets Semantic Classification Acc. 80%

Oliveira
[147]

Stock market T Not specified Semantic Regression r
2 = 0.20

Rao [163] Stock market T 4M tweets Semantic, Non-
SM

Regression r
2 = 0.95 (DJIA), r

2 =
0.68 (NASDAQ)

Zimbra
[227]

Stock market O 64K posts Semantic, Non-
SM

Regression r
2 = 0.59

Li [119] Stock market T Not specified Semantic Regression r = 0.63 (sad), 0.49
(anger)

Zhao
[224]

Stock market T Not specified Semantic, Vol-
ume

Regression RMSE = 33.0% (DJIA)

Mishne
[136]

Movie sales O Not specified Semantic, Vol-
ume, Non-SM

Regression r
2 = 0.29

Asur [9] Movie sales T 2.9M tweets Semantic, Vol-
ume, Non-SM

Regression r
2 = 0.97

Tang
[186]

Movie sales F Not specified Social, Non-SM Regression r
2 = 0.88

Abel [3] Movie & album
sales

O 100M posts Volume, Non-
SM

Regression r
2 = 0.74 (movies), 0.92

(albums)

T = Twitter, F = Facebook, SW = Sina Weibo, K = Kickstarter, O = Blogs, other

by [90], and [17] gives a chronology of developments in utilizing SM data. Early work, as surveyed
by [169], identified the potential utility of incorporating SM into public health-related tasks. More
recent comprehensive reviews confirm this potential while noting the lack of actual systems taking
advantage of SM [34,85, 193].
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Influenza

Success in predicting epidemiological outbreaks was reported by [45, 47, 90, 117] to varying degrees.
A canonical example of sentiment and time series analysis in Twitter over the 2008-2009 influenza
season in the United States was provided by [46]. The authors report a high correlation between
queries for curated vocabularies in Twitter data and influenza-like illness prevalence in the United
States. Work by [90] shows that an outbreak of dengue fever on Madeira Island (a Portuguese
territory) was tracked in real-time using online biosurveillance techniques. Work by [117] utilizes
an agent-based model [23] but reports ambiguous predictive power with data collected from a
purpose-built application. When used in conjunction with and validated by traditional data
sources via the Center for Disease Control (data specifically from the Outpatient Influenza-like
Illness Surveillance Network), Twitter data can reduce forecasting error by 17-30% [151] reports.
Specifically, [108] combines part-of-speech tagged, stemmed, and Amazon Mechanical Turk
labeled Twitter data with external sources like Google Flu Trends to gain this increased
forecasting resolution. In related work, [51] find that models augmented with Twitter n-gram and
LIWC features are more accurate in predicting 20 county-level health-related statistics.

Although not expressly an SM data source, Google Flu Trends (GFT), released in 2008, has
been the topic of much discussion in the literature, and is often used as a basis for comparison in
Internet data-based biosurveillance models [193]. Work by [45] gives an early assessment of GFT’s
ability to predict influenza outbreaks by monitoring the search prevalence for influenza-like illness
symptoms, showing promising results and supporting early excitement in epidemiological research.
However, [148] subsequently reevaluate these results, and show that because GFT leans so heavily
on correlative measures assumed to be good predictors, the models developed ultimately did not
anticipate the 2009 H1N1 pandemic and severely overestimated both the 2011-2012 and 2012-2013
flu seasons. In fact, [111] shows that GFT overestimated the number of anticipated cases in the
2011-2012 season by more than 50%. This could be explained by a shift in public attention to
influenza following the 2009 pandemic. As [111] note, GFT makes the assumption that online
behavior is determined by outside events (e.g. illness) but does not take into account the way
online platforms shape the way users search. For instance, if a search platform suggests to a user
that a query related to “fever” or “cough” might be flu-related, this may influence the user to
continue searching for influenza-related information. These additional queries could bias GFT to
believe the flu is more common or severe than it actually is.

Some doubt regarding studies which correlate SM with influenza-like illnesses is cast by the
work of [19]. They expand upon previous work on Twitter demonstrating that high correlations
may in fact be the result of questionable methodology. They replicate three studies,
demonstrating that the similar, or even better, performance can be achieved using irrelevant or
falsely generated data. This suggests that the mathematical models used in previous studies may
be too powerful, overfitting the small amount of real-world influenza data which should lead to
difficulty in generalizing the model to new data (as seen with GFT). This position is strengthened
by the fact that the same models generalize very poorly when trained on one spatial region and
tested on another. That is to say, a model trained on data from the US Northeast will likely
perform very poorly in forecasting influenza-like illness on the West coast.

Echoing the positions taken by elections researchers [78, 134, 176], without a better
understanding of predictors in SM data, developing accurate models of external events based on
SM features will continue to be quite difficult. There are any number of powerful models which
can be used to model illness in the real world, but it is unclear how well any of these methods
might generalize across space or time [19]. That being said, research on disease detection and
forecasting continues both for influenza-like illnesses and other diseases. For instance, [228] apply
advances in deep learning to the task of detecting infectious intestinal diseases such as norovirus
and food poisoning.
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Mental Health

Infectious diseases are not the only health issue with relevance to SM. Researchers have also begun
to use SM to identify or predict various mental health issues including addictive SM usage [180],
anorexia recovery [32], addiction recovery [140], distress [114], suicidal ideation [57], suicide
rates [209], and post-partum depression [52, 54], as well as depression more generally [55, 165, 188].

A chief challenge in the area of mental health disorders is getting help to individuals in need.
Screening for mental health problems is expensive and many disorders may make individuals less
likely to seek out professional help. Social media promises a cheap, and possibly immediate,
method of identifying individuals who may benefit from outreach. While current work suggests
SM may hold great promise, there are also a number of limitations involved, including a lack of
systematic reviews, differing methodologies, and difficulty in creating a ground-truth for model
comparison.

Of all mental health disorders, depression has received the greatest attention from SM
researchers. In the works of [52–55] postpartum and general depression was studied among
Twitter users taking advantage of behavioral features (e.g., volume of tweets, number of replies)
as well as linguistic features (e.g., positive and negative sentiment, use of pronouns). In all three
studies, ground-truth for depression was measured by having each user fill out a survey on
depressive symptoms. The reported studies were able to achieve accuracy rates of 72.4% [55],
74.6% [53], and 80.5% [52] in identifying depressed users. This work finds that depressed users on
SM can be characterized by decreased social activity as well as increased negative sentiment and
use of personal pronouns. In order to validate their findings, [54] conducted interviews with the
165 subjects of their study. The authors found that reduced social interactivity alone explained up
to 50% of the variance in collected data. Similar results are also found for Japanese Twitter users,
possibly reducing concerns that previous work on English-speaking users would not be
generalizable [188].

Social media data has also been used to make predictions about recovery. [32] use survival
analysis to examine Tumblr users who self-identify as anorexic. Even using very simplistic
behavioral and linguistic features, they are able to predict recovery higher than chance. They
identify specific features that predict recovery and compare these against features suggested by
previous literature. Work by [140] applies a similar technique to Twitter users attempting to
overcome nicotine addiction. Their features and model are also quite simplistic but are still able
to show clear, statistically-significant differences between relapsers and those who successfully quit
smoking. While exploratory, their work does suggest that simple features tied to the existing
domain-specific literature may contain the signal necessary for proper classification. This is
supported by quantitative results presented by [57] who attempt to predict if posters on mental
health forums on Reddit will show signs of suicidal ideation. They report an accuracy of 80% in
predicting whether users will begin posting in the next few months to the subreddit
r/SuicideWatch, a forum for users thinking about committing suicide. Compare this to the work
of [26] who classify posts related to suicide based on their intent. For example, some mentions of
suicide indicate suicidal intent while others may be a report of suicide, condolence, or a flippant
reference to the act. With seven classes, they achieve an F1 score of 0.69 which indicates
relatively good classification on this task. A similar study focusing on nowcasting was able to use
Reddit posts to identify individuals who were distressed [114]. They report an accuracy of 54.5%
versus a baseline of 30.5% when classifying four ways based on the level of distress.

The value of more complex models and features is demonstrated by more recent work [31, 180].
The work of [180] makes use of behavioral features related to Instagram and Facebook usage in
order to detect users with a social network mental disorder, mental disorders which manifest
themselves in terms of “excessive use, depression, social withdrawal, and a range of negative
repercussions” [180]. They achieve classification accuracy as high as 92.6% through the use of a
more complex model which better takes into account changes in behavior over time. By
comparing a number of machine learning techniques, [180] are able to show the importance of
choosing an appropriate model, suggesting that previous results may be particularly limited by
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the less advanced techniques often employed by social scientists. While much of the work on
mental health fore- and nowcasting relies heavily on hand-curated lexical features, [31] provide an
alternative by combining a statistical technique known as topic modeling with insights from
clinical annotators. By identifying the topics in SM posts related to eating disorders, they are
able to classify the severity of a users eating disorder with high accuracy (F1 = 0.81).

Taken together, existing work on mental health disorder detection and prediction suggests that
SM is a valid and useful tool. Classification performance ranges from mediocre to very good with
the greatest success in areas where more advanced features and models have been used. While the
greatest number of papers have been published on detecting depression, existing work also relies
almost exclusively on very simple behavioral and linguistic features within a logistic regression
framework. Given the strong performance of [180], there may be room for improvement within
this domain if researchers are willing to apply more advanced techniques over larger quantities of
data.

Much of the work on diagnosing mental health disorders from SM data makes use of
techniques that can be applied elsewhere. A good example of this is [58] who makes use of topic
modeling to understand users food choices based on the food items they post to Instagram. They
make use of these food topics and user geolocation information in order to detect whether a
particular region is a “food desert”, an area with limited access to nutritional food items. They
achieve an accuracy of 80% in this prediction task by combining both user posted information
with publicly available socio-economic data from each region.

While applying more advanced statistical techniques and machine learning is a clear area for
improvement, there remain a number of methodological difficulties that future work must address.
Perhaps the greatest difficulty is in comparing against ground-truth data. Diagnosing mental
health symptoms can only be done by trained professionals, which makes it difficult to know
whether a particular SM user has a disorder or not. As a result, researchers typically focus their
work on particular users who volunteer to fill out a survey measuring these symptoms. While this
technique provides researchers with a ground-truth, it biases these studies, making it difficult to
know if results can be applied to all SM users.

Adverse Drug Reactions

Information from SM has also been used to identify drug users suffering from adverse drug
reactions (ADRs), negative side effects arising from pharmaceutical drugs taken as prescribed.
Given that ADRs are typically reported on a case-by-case basis to physicians, the ability to
monitor online disclosure of these reactions at a larger scale could greatly increase the ability of
medical professionals to intervene and track these cases. Most studies in this area focus on data
mined from online medical forums where individuals ask questions about their
symptoms [71, 142, 178], although one study also evaluates ADRs using Twitter [18].

Detection of ADRs first requires the identification of pharmaceutical drug users. Researchers
have made use of publicly available medical dictionaries in order to train classifiers, achieving
reasonable accuracy. In the work of [18] a medical dictionary is used to identify drug-related
tweets and they are able to identify drug users with a mean accuracy of 74% and AUC of
0.82. [178] achieve somewhat better results using online health forum data, achieving 87%
precision and 80% recall.

In terms of identifying ADRs, [18] use a bag-of-words approach, classifying with a support
vector machine (SVM) and achieve a mean accuracy of 74% and area under the curve (AUC) of
0.74, somewhat lower than their results for drug user identification. Somewhat lower results in
ADR identification were also achieved by [178] with a precision of 85% but much lower recall at
56%. A classifier was trained by [142] using association rules based on keywords and
part-of-speech tags. They also found the task difficult, reporting a precision of 70% and recall of
66%. Together, these studies indicate that identifying ADRs can be accomplished somewhat
successfully using a wide range of features and classification techniques. After testing three
different methods for extracting ADRs from both medical forum and Twitter data [214] found
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best results in applying an initial filter to posts followed by a sequential model that is able to
extract actual mentions of ADR-related terms from the text.

The previously mentioned studies show that SM can potentially be used to identify drug use
and ADRs. Taking this research a step further [71] produced an unsupervised PMI-based classifier
and used it to predict ADRs not labeled by the FDA. Their system models drug-symptom
relations and classifies a symptom as an ADR if it appears more often in user comments than
expected by chance. They tested their model on two case studies, cholesterol-lowering drugs and
anti-depressants. Cholesterol-lowering was chosen because the class of statin drugs were relabeled
by the FDA in 2011 to have cognitive impairment as a possible side effect. Among
anti-depressants, Wellbutrin was relabeled in 2009 to include agitation as a possible side effect.
Using their model [71] were able to correctly identify both of these relations using user comments
before the FDA relabelings. Among all the ADRs in their data, they achieved a high precision of
93.2% with recall of 70.4%.

This work shows that identification of ADRs is possible using online comments, particularly
through health forums. Degree of success is mixed, likely due to varied methodology and reliance
on properly integrated medical terminology databases. Still, current work suffers from a number
of difficulties which might be improved. First, feature selection has generally been rudimentary,
using bag-of-words [18], dictionary-based keywords [178], and simple association rules [142]. The
best performance, achieved by [71], makes use of a more complex grammatical parsing algorithm
along with relational modeling of drugs, symptoms, and individuals. The success of future work
likely hinges on incorporating more robust techniques from machine learning.
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Table 3. Summary of Studies on Public Health

Article Topic Data

Source

Data Size Features Task Success Rate

Bian [18] Adverse drug re-
actions

T 239 users N-gram, Seman-
tic, Non-SM

Classification Acc. 74%

Feldman [71] Adverse drug re-
actions

O 41K posts,
5.3K users

Semantic, Non-
SM

Classification F1 0.84 (statins) F1 0.78
(anti-depressants)

Nikfarjam
[142]

Adverse drug re-
actions

O 6.8K posts Semantic Classification F1 0.68

Segura [178] Adverse drug re-
actions

O 400 posts Semantic, Non-
SM

Classification F1 0.68

Yates [214] Adverse drug re-
actions

T, O 400K forum
posts, 2.8B
tweets

N-gram, Seman-
tic, Non-SM

Classification Prec. 0.59 (O) Prec. 0.48
(T)

Corley et al
[46]

Influenza T, O 97.9M posts Metadata, N-
gram

Regression r = 0.63

Lamb [108] Influenza T 3.8B tweets N-gram, Seman-
tic

Regression r = 0.80

Paul [151] Influenza T Not specified N-gram, Seman-
tic

Regression 25.3% improvement

Bodnar [19] Influenza T 239M tweets N-gram Regression r = 0.88
Zou [228] Intestinal dis-

ease
T 410M tweets N-gram Regression r = 0.73 (Norovirus), 0.77

(Food poisoning)
Zhang [222] Asthma T 5.5M tweets N-gram Classification Acc. 66.3%
Chancellor
[32]

Mental health TR 13K users,
68.3M posts

Metadata, Se-
mantic

Regression Concordance 0.658

De Choud-
hury [52]

Mental health T 40K tweets Semantic, Social Classification Acc. 80%

De Choud-
hury [55]

Mental health T 2.1M tweets Semantic, Social Classification Acc. 70%

De Choud-
hury [54]

Mental health F, T 40K tweets,
0.6M posts
(F)

Metadata, Se-
mantic, Social

Regression r
2 = 0.48

De Choud-
hury [57]

Mental health R 63K posts,
35K users

Metadata, Se-
mantic

Classification Acc. 80%

Burnap [26] Mental health T 2K tweets N-gram, Seman-
tic

Classification F1 0.69

Shuai [180] Mental health F, I 63K users
(F), 2K users
(I)

Metadata, So-
cial, Behavior

Classification Acc. 78% (I), Acc. 83%
(F)

Tsugawa
[188]

Mental health T 209 users,
574K tweets

N-gram, Seman-
tic, Social

Classification Acc. 66%

Won [209] Mental health O 153M posts N-gram, Non-
SM

Regression Acc. 79%

Chancellor
[31]

Mental health I 100K users Semantic Classification F1 0.81

Lehrman
[114]

Mental health R 200 posts N-gram, Senti-
ment

Classification Acc. 54.5%, baseline
30.5%

Culotta [50] Public health
statistics

T 4.3M tweets Metadata, Se-
mantic, Non-SM

Regression r = 0.63

De Choud-
hury [58]

Food Deserts I 14M posts Semantic, Spa-
tial, Non-SM

Classification Acc. 80%

T = Twitter, F = Facebook, SW = Sina Weibo, I = Instagram, TR = Tumblr, R = Reddit, O = Blogs,
other
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Threat Detection

Numerous attempts have been made to use Twitter data to detect rare or anomalous real-world
events such as natural disasters, security events, and political uprisings. These types of events
have garnered attention due to their implications for safety and security, and the spontaneity with
which they arise. That is, unlike many of the other event types surveyed here, such as elections or
the spread of influenza, these events do not occur regularly and do not have a limited set of
outcomes (e.g., winning or losing an election). Rather, these events often constitute crises or
disasters that an automated system should be able to detect in real-time as opposed to forecasting
into the (distant) future.

Threat detection has built on more general work in event detection which aims to identify
events from a stream of SM posts. For example, [199] focus on automatically identifying
geographically localized events via Twitter streams using a combination of geofiltering and
clustering techniques. Individual tweets are assigned to clusters based on 41 features computed
from tweet text and geolocation metadata, and the resulting clusters are classified as belonging to
either an “event” or “non-event” class. The authors report an F1-score of 0.857 using a pruned
decision tree. An alternative system, EvenTweet, is proposed by [2]. They incorporate geolocation
features as well as similarity between keywords over a particular time range to identify tweets
corresponding to real-time events. Although they tested their model specifically on soccer
matches, their framework is general enough to be potentially applicable to other domains. The
literature on general event detection is quite large and spans any number of specific content
domains [6, 7, 60, 133, 149, 225], therefore we focus specifically on event detection in the context of
security events.

Cybersecurity Events

Cybersecurity, otherwise known as IT or computer security, is an increasingly important area of
interest for the protection of national, corporate, and organizational interests. A review of issues
and state-of-the-art techniques in cybersecurity is well outside the scope of this literature review.
Interested readers may find more information in recent literature reviews such as [73, 125].
Cybersecurity research involving SM can be thought of in terms of two lines of work: 1) can SM
be used to detect cybersecurity events on SM systems? 2) can SM be used to detect cybersecurity
events affecting other systems?

Addressing the first question, [97] propose a method for detecting “identity cloning accounts”
on Facebook. The goal of these attacks is to enter into actual users’ friendship circles to access
privileged information. Although their detection algorithm appears feasible, they are limited in
evaluation due to the fact that they cannot collect information about actual attacks nor can they
simulate an attack on Facebook themselves. In the work of [210] they sought to circumvent these
issues by having actual Facebook users participate in an experiment, browsing their own Facebook
pages as well as browsing a stranger’s. Given that intruders are likely to show different click
behavior than legitimate users, they propose a detection scheme based on Smooth Support Vector
Machines (SSVM). After two minutes they are able to identify intruders with an accuracy of
81.9% and by nine minutes 92.9%. While these results are impressive, savvy intruders might be
able to circumvent the system by modifying their own behavior.

In terms of using SM to detect cybersecurity events happening outside of SM, current work
has achieved less success. [166] explore the ability of Twitter to detect data breaches, account
hijackings, and distributed denial of service (DDoS) attacks. The biggest challenge for such an
attempt is the problem of data sparsity. While the volume of total tweets is quite large, tweets
relevant to cybersecurity events are rare and tweets related to current cybersecurity events are
even less common. In spite of these challenges, [166] are able to detect these types of events to
some degree. They present their results in terms of area under the curve for precision-recall plots,
achieving scores of 0.716, 0.676, and 0.459 for account hijacking, data breaches, and DDoS attacks
respectively.
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Research on detecting cybersecurity events mirrors work on SM seen elsewhere. The most
impressive results come when SM behaviors are used to detect irregular activity representative of
an account hijacking as in [210]. Behavioral markers of the type they utilize appear to be quite
powerful in prediction, but wide-scale analysis of such systems cannot be done by outside
researchers. This limits, unfortunately, the usefulness of such measures. On the other hand, it is
possible to detect when SM users are discussing cybersecurity events [166]. Work on this topic is
in its infancy, relying on topic and sentiment analysis techniques which are still under active
development.

Protests, Civil Unrest, and Crime

While cybersecurity events typically occur online, SM can also be used to detect and predict
offline events. Of particular importance for threat detection are the prediction of events such as
crimes, protests, and other types of civil unrest. Because mass use of SM has emerged only
recently, research focuses largely on a small number of geographical regions where civil unrest has
occurred in the past decade, particularly the Middle East [20, 101, 184, 203] and Latin
America [84, 141, 162, 212], although some work exists on protests within the United States [56].
Whereas cybersecurity events are detected in real-time, i.e., “nowcasting”, protests and civil
unrest require coordination among individuals and research has investigated the ability not just to
detect these events but also to forecast when they will occur.

Work on the Middle East has focused largely on the so-called “Arab Spring” in early
2011 [20, 184, 203], although [101] examines the 2013 military coup in Egypt. The work of [20]
examines the ability of information mined from Twitter to detect and predict Arab Spring
protests in Egypt within a timespan of 3 days. They use tweet content and “follower” relations on
Twitter in order to predict events taken from GDELT [113], a publicly available database of
political events around the world. They achieve similar results both for detection and predicting
within a 3 day timespan with accuracies of 87.1% and 87.0%, respectively [20]. They report that
social relations alone achieve much better classification than tweet text content. The work of [203]
examines a similar Twitter dataset with an alternative probabilistic graphical model. Although
they do not report quantitative accuracy scores for their model, they come to a similar conclusion
that including additional information beyond just tweet content increases model performance.
That being said, even simple statistical relations can be used to predict protests. The work
of [184] demonstrates that coordination on SM (e.g., the adoption of a small set of frequently used
hashtags) is predictive of protest volumes on the following day, not just in Egypt but throughout
all Arab countries majorly affected by the Arab Spring.

Little work has been done to extend the research on civil unrest detection to more developed,
Western countries. This is perhaps due to the relatively decreased civil unrest within these
nations. With the rise of the “Black Lives Matter” movement and worries about police shootings
in the USA, there has been a single study attempting to extend this work [56]. This research is
mainly exploratory, investigating SM variables that might have been used to predict protest
volumes across geographic regions. In terms of accuracy, their system captures 81% of protest
volume within 20% of the true value, which is perhaps impressive given their use of a simple
Poisson regression model using limited features.

Separate research has been conducted using ground-truth data about protests, riots, and civil
unrest in Latin America focusing on a timespan between 2013 and 2014 when major protests took
place in many countries. Work by [212] and [84] is similar to previously examined work on the
Middle East in that they both attempt to retrospectively build systems capable of detecting
unrest. Working with data from Tumblr [212] demonstrated impressive precision in event
detection (95.6%) with an average lead time of 4.8 days. The work of [84] looks at Twitter data
attempting to model cascading social participation, the idea that individuals are more likely to
join an offline protest if they are exposed to a critical mass of online support. Their work is
somewhat less successful, achieving an F1 score of approximately 80% on their Brazilian data, but
only 55% on their Venezuelan data. It should be noted, however, that both of these models are
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trained on data from time periods of heavy unrest, and it is unclear whether these models would
have predictive power in an implemented event detection system.

A separate line of research on Latin American protests is well worth discussing in terms of
clarifying how well a fully implemented system might be capable of detecting unrest events. The
EMBERS system, as described by [162], is an automated event detection system which has been
in place making forecasts since November 2012. EMBERS makes use of a wide variety of publicly
available data including Tweets, RSS news and blog feeds, meteorological data, and Google Flu
Trends among many others. While most research papers focus on a single model of event
detection, EMBERS makes its forecasts by combining five separate models, only two of which has
been fully investigated in separate work [105, 141]. They evaluate their models’ forecasts based on
a “quality score” which equally weights predictions in terms of how well they match the date of
the event, the location, the event type, and the population which will be involved in the event.
This results in a score from 0 to 4, with higher values indicating better predictions. An average
quality score of 3.11 is reported by [162], with recall of 82%, precision of 69%, and an average lead
time of 8.88 days. Putting this into context, the results of a single model achieves a classification
F1-score ranging from 0.68 to 0.95 depending on country [105]. These impressive results, not just
in detecting events but in detecting specific properties of those events, demonstrate just how
powerful the lines of research previously discussed might be if put into practice.

While SM may be predictive of large-scale organized protests and civil unrest, one may wonder
whether the same would be true for smaller-scale criminal acts which do not have the same
organizational requirements. Published work on crime forecasting is largely limited by the
(in)accessibility of large-scale databases of detailed criminal records. Because of this, published
research has largely focused on a single city, Chicago, which has made some of its records
available for research purposes [39, 80]. A wide variety of crime types are examined by [80]. The
simplest method for predicting areas where crimes are likely to take place involves making use of
historical crime data. This can be augmented by SM posts, which [80] analyze using a topic
model, linking the learned topics to the likelihood of various crimes. Of the 25 crime types
examined, 19 see a forecasting improvement by incorporating SM data. Using the same data, [39]
choose to combine historical crime data with a sentiment analysis of Twitter posts as well as with
current weather conditions. They report classification accuracy somewhat lower than found in [80]
and also find that the addition of weather and SM sentiment only improves classification
marginally. Further, because they do not report separate results for SM data or weather data
alone, it is unclear whether this marginal improvement is in fact the result of adding SM data at
all. Based on these findings, it is unclear what the best approach to making use of SM data for
crime forecasting might be. While there may be some value for police organizations, it is unclear
how great that value might be.

Natural Disasters

Natural disasters represent an additional type of threat which can be detected through SM. One
of the first demonstrations of SM’s ability to detect events in real time came in the form of
earthquake detection [104]. Although earthquakes cannot be forecasted through SM, a number of
articles have demonstrated that Twitter users represent a sensor network that can potentially
outperform standard seismology systems [49, 66, 168]. In these special cases, earthquake-related
tweets can functionally predict when standard seismology equipment will detect an earthquake a
few moments later. Not only can Twitter beat traditional sensors, but they can also distribute
information about a quake to potentially affected individuals much faster than governmental
agencies [168]. Additionally, SM data can be used to detect earthquakes where high resolution
equipment may be sparse [69]. Other types of natural disasters are explored by [135] who
particularly focus on identifying specific locations most in need of aid. Applying their method to
earthquakes, floods, and tornados, they are able to identify streets and places of interest most
hard hit by disasters.

A small set of studies also exist on using SM to now- and forecast weather more generally.
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Concerns regarding climate as a national security issue have made these additional studies
increasingly relevant in the area of threat detection [143]. While this is an underexplored area,
there is some evidence that SM can be used to both detect and forecast weather. For instance, the
authors of [109] use tweets from 5 UK cities to nowcast amounts of rain. Even with a relatively
simple model based on weather-related keywords they are able to nowcast daily rainfall with an
RMSE of 2.6mm, a 40% error reduction versus their baseline model. Levels of air quality can also
be inferred through SM data [36, 120, 132]. Looking at air pollution levels in Chinese cities, [132]
first build a spatial model which does not take advantage of SM. This allows the model to take
advantage of the fact that pollution levels across cities are correlated based on their real-world
properties. Using this as a baseline, they expand to include information from Sina Weibo posts
finding a 13% reduction in prediction error. The problem of air pollution detection can also be
treated as a detection task where there is either a smog event in a city or not on any given day.
Taking this approach, [36] combine traditional physical sensors with SM check-in and textual data
in order to estimate the population mobility and traffic conditions which might lead to smog
events. Their neural network-based architecture is able to classify smog events with high accuracy
using only physical sensor data, but sees an improvement in performance when adding SM data as
well, indicating that even when traditional sensors are in place SM data can still add additional
value. While the previous two works focus on textual data from SM, [120] make use of images
posted on SM in order to monitor air pollution. While their method works very well on a small
set of high quality images (r = 0.89), on a larger set of noisy images taken from SM the method is
much less successful (r = 0.41).

Threat detection is an area of great promise with at least one detection system currently
operational and demonstrating great effectiveness. Positive results through retrospective analysis
utilizing a variety of modeling techniques also show the possibility of real-world usage. At the
same time, it should be made clear that extremely successful results in retrospective studies, as
in [113, 212], are unlikely to translate into similar results for actual forecasting. This is because
many of these retrospective analyses formulate the supervised learning problem as only having to
decide between a small set of classes, in some cases just two (e.g., event or non-event). This
greatly simplifies the learning problem, but real-world systems such as EMBERS [162] need to
make predictions not just of time and event, but also of event type, population involved, and
location. These added details greatly increase the difficulty of the problem and likely require
incorporating information from outside of SM, such as weather or financial news [162].
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Table 4. Summary of Studies on Threat Detection

Article Topic Data

Source

Data Size Features Task Success Rate

Boecking
[21]

Civil unrest T 1.3M tweets Metadata, N-
gram, Semantic

Classification Acc. 87%

Boecking
[20]

Civil unrest T 1.3M tweets Metadata, Se-
mantic, Social

Classification Acc. 87%

De Choud-
hury [56]

Civil unrest T 29M tweets Semantic Regression r
2 = 0.42

Kallus [101] Civil unrest T, O Not specified Semantic Classification AUC 0.92
Ramakrishnan
[162]

Civil unrest T, O 3B messages Semantic, So-
cial, Spatial,
Non-SM

Classification Rec. 0.82

Korkmaz
[105]

Civil unrest T 500M tweets N-gram, Non-
SM

Classification F1 0.95 (Brazil), 0.88
(Mexico), 0.70 (Ar-
gentina)

Gerber [80] Crime T 1.5M tweets Semantic, Spa-
tial, Non-SM

Classification AUC 0.72

Chen [39] Crime T 1.0M tweets Semantic, Non-
SM

Classification AUC 0.67 (w/ SM), 0.66
(w/o SM)

Wu [210] Cybersecurity F 112 users Behavior Classification Acc. 90%
Ritter [166] Cybersecurity T 14.6M tweets Semantic Classification AUC 0.72 (hack), 0.46

(DDoS), 0.68 (breach)
Avvenuti
[10]

Earthquakes T Not specified N-gram Classification F1 1.00 (magnitude ≥4.5 )

Sakaki [168] Earthquakes T Not specified N-gram, Seman-
tic, Spatial

Clustering MAE 3 deg. (lat./long.)

Middleton
[135]

Natural disas-
ters

T Not specified N-gram, Spatial,
Non-SM

Classification F1 0.77 (Hurricane), 0.53
(Tornado)

Mei [132] Weather SW Not specified N-gram, Spatial Regression 13% gain w/ SM
Chen [36] Weather SW Not specified Semantic, Spa-

tial, Non-SM
Classification AUC 0.976 (current

smog), 0.956 (current no
smog)

Li [120] Weather O 8.7K images Visual Regression r = 0.41
Lampos
[109]

Weather T 8.5M tweets N-gram Regression RMSE 2.6mm

T = Twitter, F = Facebook, SW = Sina Weibo, O = Blogs, other

User Characteristics

While many of the areas of study previously investigated are more closely linked to predicting
events in the real world, many of these tasks rely on or might be improved by accurately inferring
various user characteristics. For instance, political preferences vary across sub-populations with
not all populations equally represented in SM data [38]. If researchers could leverage inferred
demographic information about users, they might be able to de-bias their models or otherwise take
advantage of known demographic relationships, such as the weighting scheme employed in [172].

Because of the importance of predicting user characteristics, this has been an active area of
research on its own, addressing a number of different prediction tasks. Potential applications have
driven interest in this area of research given the possibility of major breakthroughs. For instance,
security analysts might use real-world demographics to understand membership in online groups
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of interest, and marketers could better take advantage of “customer segmentation” where user
locations and demographics correlate highly with purchasing certain products.

Work in each of these areas has utilized text produced by users within social media
platforms [33, 40], as well as images [215], and user metadata [89, 177, 195] to build models for
location and demographic prediction. While the studies across these areas no doubt present
challenges for future work, the positive results reported indicate sustained progress in
incorporating a variety of features to build ore accurate and predictive models.

Geolocation

Prediction of user location has been an active area of research, especially given that many social
networks may contain very little geolocation metadata. The work of [40], for example, notes that
fewer than 1% of tweets in their study contain geolocation tags. Of U.S. Facebook users in 2010,
only 4% had entered their home address in a way that could be converted to latitude and longitude
coordinates [40]. Because most users are not sharing their location information, any attempt at
geolocation will necessarily be biased by the characteristics of those whose data is available.

Geolocation research can be roughly divided into two separate prediction tasks. On the one
hand, location can be thought of as a static property of each user corresponding to their home
address. On the other, location can be thought of as constantly shifting, such that researchers
might attempt to predict where an individual is likely to be located in the future. It should be
noted that we focus predominantly on mean error distances rather than medians. While many
studies achieve impressive results in terms of median errors, mean distances are often quite larger
because users who are not located with high precision are often very poorly located. In terms of
applicability, readers should keep in mind that an average error distance of 300 miles may seem
quite large, but may still reflect a model that classifies half of users accurately within only a
handful of miles.

Multiple methods can be used to predict a user’s home location, but principally research has
investigated the way in which social connections between users can be exploited to understand
location. The work of [11] provides the first serious attempt at this by using friendship
connections on Facebook in order to locate users. They note that the likelihood of a friendship
decreases as distance between two users grows. Therefore, if a user’s location is unknown, the
known locations of their friends can be used to infer the user’s home location. Prediction accuracy
increases with the number of friends. For users with 16 or more friends with known locations,
67.5% can be located within 25 miles, as compared to only 57.2% accuracy for an IP-based
location. By removing 75% of known addresses, [11] presented a much more difficult evaluation
problem. Although performance decreases, they are still able to achieve an accuracy of 57.4%
within 25 miles. Work by [131] replicates [11] on Twitter data and report an average error of 426
miles. By incorporating the locations of user contacts they reduce that error to only 364 miles,
although the top 60% of users are located within 6 miles. A similar stance is taken by [43] who
make use of a small set of known user locations from GPS-tagged Twitter posts in order to
estimate locations for users without any explicit location information. They take advantage of the
social network and by jointly estimating the locations of a large number of Twitter users (≈100M)
report an average error of 289km, better than previous methods [11, 131]. Unfortunately, their
method is unable to make location estimates for users who do not have social ties to other
known-location users. Social graph-based methods are not uniformly successful. Working with
Sina Weibo data, [211] find they are able to locate user home locations with an average error of
789km, much larger than that reported in other work.

An alternative early paper focused on textual differences between regions by modeling the
kinds of topics used on Twitter [68]. These latent, regional topics allow for only very rough
geographic estimates across the US with an average error of 900km. By applying the task of user
home location to Twitter data, [177] annotated geolocation information for 500 randomly selected
users. Their approach does not rely on social information and instead aggregates the predictions
from a number of variables including tweet message, location fields, time zones, and linked web
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pages. Altogether their method is able to predict home location within a 100 mile radius for 79%
of their users, which is quite impressive given the noise involved in Twitter data. The work of [33]
learns a set of “local” vocabulary in an unsupervised fashion which they use to predict which of
5,913 U.S. cities a Twitter user lives in. This approach likewise ignores social information and is
able to accurately classify 49.9% of users, an impressive feat for a purely lexical approach.
Classifying user cities based purely on the use of specific learned keywords does poorly as reported
by [103]. In their study they classify users from 10 distinct cities across the world but only achieve
an accuracy of 65.7%.

More recently, [89] show that naive spatial clustering with k-means is able to locate users home
locations within 50 kilometers for 86.2% of users. Importantly, only users with a certain number
of geotagged posts could be classified. For other users, social clustering was still able to achieve
71.2% accuracy within 50 kilometers. While most home location detection papers have focused on
locating users across a large area (e.g. the entire United States), [226] focus on Flickr users in
New York City, classifying them into 100m2 grids. Because users post images on Flickr of many
different types, they first identify images that are likely to have been taken at the user’s home and
then make predictions based on the geographic information in those images, classifying with 72%
accuracy. Although all research on home location prediction suffers from similar pitfalls, including
limited access to ground-truth locations, much progress has been made in recent years. While
many users cannot be accurately predicted, even relatively simple clustering methods work for a
majority of users. Because of limited ground-truth data, home location prediction has focused
largely on a small number of users. Given the utility of social information in prediction, access to
larger datasets might well lead to improved performance.

Predicting home locations is constrained by the number of users with known locations for
evaluation. Predicting the location of an individual SM post is somewhat simpler in that there are
many more geotagged posts. In the case of Twitter, even with only a small percentage of tweets
containing location information, it is still possible for researchers to obtain millions of geotagged
tweets for use in training and testing a model. Viewing the geolocation problem as one of
predicting locations for individual SM posts also allows researchers to explore the ability of their
models to forecast where an individuals’ next SM post will be located. This can be done by taking
advantage of spatio-temporal patterns of SM users individually or by comparing individual
patterns with those of similar users, incorporating social dynamics.

As with home location prediction, [177] present initial tweet location results which are quite
impressive. Their system aggregates location information from tweets, location fields, and other
information such as websites and time zones mentioned in a tweet, achieving an average (mean)
error distance of 1408km, but a median error of only 29.7km. This distinction between mean and
median errors is driven by a small number of tweets which are very poorly localized, while the
median error demonstrates that the majority of tweets are localized with high accuracy.
While [177]’s positive results rely on the combination of a variety of data types mined from
SM, [4] present a nonparametric Bayesian model which relies solely on the text of tweets. The
model relies on the fact that vocabulary is shaped by geographic location and is able to achieve an
average error of only 91.5km on predicting geotagged tweet locations. While different datasets
make comparison difficult, this result certainly compares favorably against the 1408km average
error of [177], showcasing the information hidden inside SM text. Unfortunately, learning with the
model is not scalable to the massive quantities of available SM data. A much more efficient
algorithm which is also based solely on text is presented by [208]. In contrast to [177] who rely on
metadata specific to Twitter, this allows the model to be applied to a range of SM including
Twitter, Wikipedia, and Flickr. They find promising results, with 49.2% of U.S. tweets located
within 100 miles. For English Wikipedia data that number rises to 88.9% and for Flickr images,
which are located only based on user-supplied image tags, that number is 66.0% [208].

These studies have all focused specifically on nowcasting the location of SM posts, and largely
ignore historical patterns of individual users. This renders their techniques unsuitable for
forecasting, which requires an understanding of how user locations change over time. This type of
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SM mobility modeling has received much recent attention as well as impressive results. A move in
this direction is made by [40] who examine Sina Weibo, a Chinese equivalent to Twitter. They use
tweet texts to understand individual user interests and then use these interests to predict
locations. Although their model could be used to forecast, they evaluate it only on nowcasting
tweet locations as in the previous studies. Direct comparison cannot be made with other studies
given that they restrict their data to a single city, Beijing. They classify 72% of tweets within 1km,
but their method excludes any tweets for which no classification was made, giving their model a
recall of only 15.8%. A more useful model is presented by [201], which incorporates knowledge
about patterns of human movement, namely the fact that individuals rarely change their patterns
and that individuals with similar social backgrounds tend to share patterns. They use bus and
taxi GPS data in order to model general spatial patterns of individuals in Beijing and incorporate
geotagged SM tweets to understand a user’s movement patterns. Their model produces a ranked
list of possible locations and they present their results as Acc@topP, representing the accuracy of
predictions so long as the actual location is within the top P predictions. Roughly 50% of tweets
are predicting within the top 60 locations, out of a total possible of 118,534.

Recent work has expanded on the possibility of incorporating knowledge of social dynamics to
predict user movements. The work of [219] specifically treats each user as a member of a latent
group, where each group shares a set of movement patterns. A soft assignment for each user is
made, allowing a user to belong to multiple groups simultaneously. Again, they model users on a
city level both in NYC and Los Angeles. Modeling multiple groups improves accuracy by 12.7%
over a model which treats all users as members of a single group.

There are a number of hurdles to overcome in geolocation prediction. Perhaps the largest is
the small percentage of geotagged data for use as a ground-truth. This is especially problematic
for models that predict individual user movements, since users that do post geotagged information
may well differ systematically from other SM users. A further difficulty in comparison is the
variety of evaluation metrics presented, as well as differences in scale. Some studies make
predictions at a country- or world-level, while others predict movements within an individual city.
Errors acceptable at one level may be unacceptable at another and differences between corpora
may make prediction arbitrarily easier or more difficult based on properties that are not well
understood. Current efforts clearly indicate that geolocation prediction is possible. Incorporating
social demographics in order to pattern users together appears to greatly improve
performance [40, 201, 219]. When available, metadata are powerful sources of geolocation
information [177], but text alone can achieve impressive results due to differences in vocabulary
across geographic regions [4]. If future work can leverage these initial findings and work with
larger sources of data then accuracy for geolocation will likely improve greatly.

Demographics

While geographic location is one important hidden property of SM users, there are any number of
demographic or psychological properties which can be inferred either from a user’s SM
relationships or posts. The two most studied hidden properties are age [51, 137, 154, 173, 194, 195]
and gender [16, 25, 51, 72, 173, 194, 195, 215]. Techniques for discovering these properties have
improved greatly over time and reveal the power of text analysis as well as social relationships in
revealing hidden properties. Further work has explored a number of other latent properties such
as race [16, 51, 137], education level [195], political affiliation [137, 197], occupation [92], income
level [159, 195], and even willingness to volunteer [182]. While none of these tasks can be thought
of as forecasting, the ability to infer the real-world properties of SM users is an important
cornerstone towards expanding forecasting models.

A wide variety of studies have investigated the ability of SM data from various platforms to
infer user gender, all with positive results. Gender detection is typically formulated as a
classification problem with two outcomes, “male” and “female”. Initial work by [25] was
somewhat pessimistic. Trained on text from tweets they achieved an accuracy of only 74.5%,
better than baseline (54.3%) or human (68.7%) performance. Incorporating a user’s full name,
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along with other metadata, increases performance to 91.8%, while [16] report 90.2% accuracy on
their Twitter dataset. The work of [72] examines Youtube comments as a source of gender
information and achieve high accuracy (89%), although gender imbalances in their dataset lead to
a much higher baseline performance (70%). Importantly, they note that inference is much easier
for individuals who tend to associate within their own gender (94%) than for users who associate
with the opposite gender (47%). This implies that gender cues in language are used differently
based on social factors and may inherently limit the accuracy achieved from text alone. In spite of
this issue, text-based techniques have made large strides. The work of [173] presents a weighted
lexicon-based approach that achieves 91.9% accuracy on Facebook and 90.0% accuracy on Twitter
data. The work of [194] reports their results in terms of receiver operating characteristic (ROC)
analysis, scoring 0.90 for text alone and 0.95 when sentiment analysis is also incorporated. Even
without using text directly, gender can be inferred to some degree. The work of [215] uses
image-based topics from Pinterest to achieve 71.9% accuracy, while [195] achieve an AUC of 0.76
using inferred user interests. The work of [51] infers gender by fitting users to match the
demographics of websites they follow on Twitter and similarly achieve an F1-score of 0.75,
indicating that gender can be inferred even when text is not available.

Age detection is also a useful tool for SM prediction tasks. While research is consistent in
attempting to infer only two gender categories, work on age detection is split between inferring
age in terms of integer values (e.g., years) or as a regression task versus breaking age into brackets
for multi-category classification. For instance, [152, 194, 195] attempt to infer whether a user is
above or below 25 years in age. The high F1-score of 0.88 reported by [152] is limited by the fact
that they train a model using only word n-grams based on Dutch SM posts. While accurate, such
methods are known to be brittle and do not generalize well to out-of-domain data such as posts
from other SM sites. An AUC of only 0.66 is reported by [195], much lower than the score of 0.90
they achieve for gender detection. Age detection can be improved by adding more detailed
sentiment analysis as in [194], who improve their AUC score to 0.83, still much lower than the
score of 0.95 for gender. This difficulty is reflected as well in [137] whose model based on general
demographics performs very poorly on the above/below 25 classification task. They find best
performance for a simple logistic regression which achieves an accuracy of 83.3%. The work of [51]
also attempts to use outside demographic information to improve performance and find somewhat
more promising results. They split age into brackets of 10 years (e.g., 25-34, 35-44) and report
correlation coefficients between inferred and actual ages in each bracket. They find best
performance for ages 18-24 (r = 0.78) and worst for ages 35-44 (r = 0.55). Both [173] and [154]
report mean errors in terms of years. The work of [173] reports a correlation coefficient of 0.83,
better than [51], with a mean error of 3.42 years for Facebook users and 3.76 years for bloggers.
Network analysis between friends on the Slovenian SM platform POKEC is used by [154] to infer
age. Their method has lower accuracy (r = 0.70, MAE = 4.15 yrs) but their results rely on only
5% of social network users having a known age. Instagram tags and profile features are
investigated by [88] who report good accuracy 79.5% when making use of both sets of features.
Additionally, they evaluate their models on a completely held out set of users, ensuring the
generalizability of their method.

Beyond gender and age there are a number of other demographic variables which might be
useful features for forecasting. The work of [195] refers to these properties as psycho-demographics.
While there are any number of attributes which could be analyzed, we focus our review here on
six properties: ethnicity, income, education level, occupation, political party affiliation, and
willingness to volunteer. These six attributes give an idea of what can be accurately inferred from
SM data both in terms of traditional demographics, but also in terms of behavioral patterns. Due
to the sparsity of work on any particular topic, we make no general claim as to the feasibility of
making specific psycho-demographic inferences and instead argue that psycho-demographics
appear to be detectable generally with a moderate level of accuracy.

For example, consider the case of detecting ethnicity. Early work demonstrated a promising
accuracy of 81.3% across 4 ethnic categories, but relied on having a user’s first and last names
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which cannot always be assumed from SM data [16]. Later work showed that a much lower level
of accuracy (∼ 60%) is possible without any kind of text data or names, based solely on matching
user demographics against the demographics of websites they follow on Twitter [51]. The work
of [137] incorporates general demographic trends including a user’s first name and reports
accuracy of 82.3%. Research on inferring user income has seen similar results. By examining a
number of features to infer user income, including other psycho-demographic traits, [159] achieves
a correlation of r = 0.633 with a mean absolute error (MAE) of £9535. The work of [195] presents
their results only in terms of AUC, making comparison difficult, but they achieve an AUC of 0.67
using only inferred user interests, and an AUC of 0.73 using more traditional text analysis. In the
same study, [195] also model education levels with slightly better results, AUC = 0.70 for user
interests and 0.77 for text analysis. Political party preference can also be treated as a latent
psycho-demographic attribute, classifying users as either likely Republican or Democrat voters.
The work of [197] reports accuracy of 81% when using user text and neighbors. Occupation
prediction shows similar moderate inference success, with an F1-score of .78 across 8 broad
occupation labels [92]. Willingness to volunteer proves to be somewhat easier to predict using
data from the SM platform LinkedIn, with an F1-score of 0.87 [182], and increases to 0.899 when
fusing multiple SM source [96].

Inference for user pyscho-demographics shows a wide range of levels of success. Social media
can be used to infer user attributes but the level of success depends on the type of data used and
the difficulty of the inference task. The highest level of performance is seen in predicting gender,
where text analysis of SM posts has reached similar levels of achievement to models based on user
first and last names [194]. At the same time, text alone is limited based on the fact that some
users systematically pattern with the opposite gender [72]. Detecting other user traits shows much
more moderate levels of performance, but the sheer variety of traits which have been successfully
inferred demonstrates the amount of information hidden in SM behavior. Because
psycho-demographics can be used to improve performance on actual prediction tasks, even
moderate success in this area is promising.
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Table 5. Summary of Studies on User Characteristics

Article Topic Data

Source

Data Size Features Task Success Rate

Perozzi [154] Age O 1.6M users Social Regression r
2 = 0.49

Zhang [220] Age T 55K users N-gram, Social Classification F1 0.81
Han [88] Age I 20K users Semantic, Social,

Behavioral
Classification Acc. 78%

Peersman [152] Age O 1.5M posts N-gram Classification F1 0.88
Ardehaly [137] Demographics T 18M tweets,

2.7M users
Metadata, N-gram,
Social

Classification Acc. 75% (age), 82%
(race)

Bergsma [16] Demographics T 168M users N-gram, Social Classification Acc. 90% (gender),
85% (race)

Culotta [51] Demographics T, O 46K users Social, Non-SM Classification F1 0.75 (gender), 0.69
(ethnicity)

Volkova [194] Demographics T 24.9M tweets Semantic, Social Classification AUC 0.83 (age), 0.95
(gender)

Volkova [195] Demographics T 4K users N-gram, Social Classification AUC 0.66 (age), 0.90
(gender)

Burger [25] Gender T 213M tweets,
18.5M users

Metadata, N-gram Classification Acc. 92%

Filippova [72] Gender Y 6.9M users N-gram, Social Classification Acc. 90%
Sap [173] Gender T, F, O 75K users N-gram Classification,

Regression
Acc. 92% (gender) r =
0.83 (age)

You [215] Gender T, P 243K images Semantic Classification Acc. 72%
Li [118] Gender SW 25K users N-gram, Semantic Classification Acc. 94.3%
Eisenstein [68] Geolocation T 9.5K users Semantic Regression MAE 900km
Ahmed [4] Geolocation T 573K tweets Semantic, Spatial Clustering MAE 91.5km
Backstrom [11] Geolocation F 2.9M users,

30.6M edges
Social, Spatial Regression Acc. 57%

Chang [33] Geolocation T 4.1M tweets N-gram, Spatial Classification MAE 509mi
Chen [40] Geolocation SW 1.1M posts Semantic, Spatial Classification Acc. 70%
Harrison [89] Geolocation T 580K tweets,

245K users
Spatial Clustering Acc. 86%

Schulz [177] Geolocation T 80M tweets Metadata, Seman-
tic, Non-SM

Regression MAE 1408km

McGee [131] Geolocation T 73M users Social, Spatial Regression MAE 364mi
Compton [43] Geolocation T 111M users Social, Spatial Regression MAE 289km
Xu [211] Geolocation TW 2M users Social, Spatial Regression MAE 783km
Kinsella [103] Geolocation T Not specified Semantic Classification Acc. 65.7% (baseline

40.3%)
Wang [201] Geolocation SW, O 7.3M check-

ins
Spatial, Non-SM Classification Acc. 45%

Wing [208] Geolocation T, W,
FR

38M tweets,
864K posts

N-gram, Spatial Classification Acc. 49% (T), 89% (W)

Zheng [226] Geolocation FR 48K images,
192 users

Spatial, Visual Classification Acc. 72%

Zhang [219] Geolocation T 1.3M tweets Semantic, Spatial Classification Acc. 50% (LA), 38%
(NYC)

Preoctiu [159] Income T 10.8M tweets Metadata, N-gram,
Semantic

Regression r = 0.63

Hu [92] Occupation T, L 9.8K users N-gram, Semantic Classification F1 0.78
Volkova [197] Pol. party T 300 users N-gram, Social Classification Acc. 81%
Song [182] Volunteerism T, F, L 5.9K users Metadata, Seman-

tic, Social
Classification F1 0.87

T = Twitter, F = Facebook, W = Wikipedia, SW = Sina Weibo, TW = Tencent Weibo, L = LinkedIn, P
= Pinterest, I = Instagram, FR = Flickr, Y = Youtube, O = Blogs, other32



Discussion

Can Social Media be Used to Predict the Future?

Having thoroughly reviewed the literature in previous sections, we find strong evidence to support
the notion that SM can be used not just to detect current real-world events, but also to make
accurate forecasts into the future. Great strides have been made in the literature since the last set
of reviews on SM prediction [100, 176, 216], and in that time the cautious optimism of previous
reviews has largely been borne out. Positive results have been found in every area examined,
although the degree of success is heavily moderated in part by a number of factors which we will
later address (Q2). While the reviewed literature likely suffers from publication bias, failing to
include many studies which found no predictive power but were not published, the fact that so
many positive results have been published indicates that in some cases SM does carry great
predictive power.

While there is no doubt that progress has been made, SM forecasting largely faces the same set
of challenges which had previously been identified. First, any predictive signal in SM is
surrounded by large quantities of noise [13, 67] and extracting meaningful signal is no trivial task.
Further, SM data is biased [155, 167]. Although we can think of SM users as sensors of the real
world [47, 62, 168], it is well known that SM users are not representative of the total
population [155] and although many SM posts describe what is going on in a person’s daily
life [95], these posts are not necessarily representative of everything going on in the world around
the user. As noted by [100, 176, 204, 216], research in SM is marred by issues of generalizability,
research which makes accurate predictions on one data set may not prove useful in another. This
issue is then compounded by the use of powerful data-driven modeling techniques without the use
of any domain knowledge to link predictive power to underlying mechanisms. This is especially
important given that many of the tasks researchers hope to predict are fundamentally complex
phenomena.

The good news is that researchers in many different areas have identified at least partial
solutions to many of these problems. In spite of these difficulties, they have achieved moderate
accuracy of forecasts across a wide range of predictive tasks. The bad news is that achieving
positive results is not necessarily straightforward. Addressing these major problems may require
explicitly modeling for user biases, applying complex data-driven models, training on varied data
sources, and incorporating domain-specific knowledge and theory into the modeling process. In
the following section, we tackle each of these difficulties in turn, identifying studies that illustrate
best practices in SM prediction.

What leads to Social Media Prediction Success?

Given the variety of results presented, it is necessary to identify general trends which differentiate
SM prediction success from failure. Previous literature reviews have had very little to say on the
topic. The work of [100] notes that studies which use advanced techniques for filtering SM data
based on keywords are more likely to find predictive success than those who use simpler filters.
Further, they find that sentiment analysis techniques were highly controversial, in some cases
lending no predictive power and in others proving highly useful. Based on an alternate review of
the literature, [176] predicted that data-driven statistical models would increasingly find a place
in SM forecasting, which has been the case.

With the explosion in research on SM forecasting over the past few years, we can make
somewhat more specific statements regarding what practices researchers have used in order to find
positive results. We identify four major issues which SM researchers must confront and make
suggestions regarding best practices for each. We discuss each issue and best practice in detail
below, presenting concrete examples demonstrating their importance for future work. The
identified best practices include:

1. Applying appropriate techniques to overcome noisy data
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2. Explicitly accounting for SM data biases

3. Learning from heterogeneous data sources

4. Incorporating domain-specific knowledge and theory

Overcoming Noisy Data

While one advantage of SM data is the large quantity of data generated by users, researchers
should also keep in mind that not all of that data will be useful for any particular forecasting task.
Consider that in their study of adverse drug reactions [18] find a total of 239 potential cancer
drug users narrowed down from a total set of 2 billion tweets. While this may be an extreme
example, the large degree of noise—specifically information unrelated to the prediction
task—represents a significant obstacle which SM researchers must overcome.

Data filtering as an important step the data analysis process was identified by [100]. Of the
studies they review, papers which manually selected keywords for filtering data supported SM
predictive power only 50% of the time. In contrast, every paper that used statistical algorithms to
select keywords automatically found positive SM forecasting results. The work of [190] provides a
possible explanation for this, noting that pre-selected keywords such as hashtags, which might at
first glance appear reasonable, can easily lead to poor real-world predictions. For instance,
forecasting protest volumes based on hashtag usage would have led to very poor predictions in the
case of Turkey’s 2013 Gezi Park protests. While hashtag use dropped sharply, protest volumes
and talk on SM related to the protests actually increased, because the protests were so large users
no longer felt the need to use hashtags to coordinate [190]. This highlights the danger of focusing
heavily on individual hashtags or keywords within a SM landscape which changes rapidly [204].
Without a principled method for filtering data, researchers risk creating models that fail due to
minor shifts in word usage.

A further challenge for filtering comes from studies that make now- and forecasts based on a
set of users who have been filtered for specific qualities. This type of filtering can bias predictive
systems based on what was filtered [190]. For instance, consider the work of [196,197] who predict
political party preferences for users who are either self-labeled as Democrats or Republicans or
who follow exclusively Democrat or Republican candidates on Twitter. Filtering in this fashion
ensures that ground-truth labels are more accurate, but also creates a bias since most Twitter
users neither self-label with a political party or follow political candidates [42]. Another example
of poor user filtering comes from [220] who infer a user’s age from Tweets wishing them a happy
birthday while mentioning their age. Because older users rarely have their exact age mentioned,
their model performs well only for users aged 14 – 22.

An alternative approach is to use statistical techniques in order to identify signal within the
massive amount of noise generated by SM without overtly removing data as in the case of filtering.
Models capable of dealing with such large amounts of data can take advantage of non-obvious
relations. For instance, [109] use weather-related keywords in order to predict rainfall. This allows
them to learn relations between users tweeting about words such as “rain”, “sun”, and even
indirect words such as “beach” or “tv”, which might indicate activities individuals are engaging in
during a sunny or rainy day. Because they rely on a fixed list of keywords, the scope of these
indirect signals is quite limited. While many users tweeting the word “fireplace” might be a useful
cue to colder weather, because it is not included as a keyword it is effectively ignored. A much
more rigorous approach is examined in [122] who nowcast user stress levels based on a corpus of
one billion tweets. Using a neural network-based architecture, they include both a set of features
using stress-based keywords, but also learn from every tweet based on meanings learned from all
of its words. They find that in isolation the keyword-based features are more effective than
learned tweet meanings, but the combination of both significantly improves nowcasting results. In
a similar fashion, [194] build upon their previous work in demographic inference by removing the
need for user or keyword filtering. This allows them to learn relations between user demographics
and Twitter data without having a set of biased users as in [196, 197].
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Noise may also be reduced in SM text data through the use of various natural language
processing (NLP) algorithms. In particular [13] examine types of noise in SM data and the effect
that various NLP algorithms have on reducing it. They conclude that while traditional NLP
methods developed for non-SM data are not ideally suited for SM text, they should still be
generally effective. In practice, these signal extraction methods, which do not rely on keywords,
are not always perfect. Consider the case of [222] who use a number of NLP techniques to reduce
linguistic noise and then train a classifier to identify asthma-relevant tweets. This extraction
technique does not rely on keywords and significantly improves correlations between tweets and
asthma prevalence as well as monthly hospital visits. On the other hand, the method actually
reduces correlation between tweets and daily hospital visits. Even with advanced statistical
models, they have difficulty forecasting whether they will see a “high” or “low” level of hospital
visits either in the next day or week, reporting only 66% accuracy for the following day. As [67]
describe in great detail, standard methods for extracting signal from text are often poorly suited
to online SM data. Researchers focused on SM data should therefore be wary of blindly applying
such methods which were originally developed for text written by traditional media or scholarly
sources.

While SM data is inherently noisy, researchers have found a number of techniques to reduce
this noise and extract the signal necessary for various now- and forecasting tasks. In some cases,
simple keyword or hashtag filtering is sufficient, but researchers should be aware filtering is best
done in a principled fashion [100]. Keywords chosen based on researcher intuition may be fragile,
both removing possibly important information and focusing on signals which may change in
importance as particular words and hashtags rise or fall in popularity [190, 204]. Alternatively,
statistical techniques for signal detection may be utilized without filtering. These methods
automatically infer which signals are important, bypassing the need for potentially biased
researcher judgments, but they have to confront the issue of noise, which may make learning
difficult. In many cases, statistical methods have shown great promise, but powerful statistical
models do not, in and of themselves, guarantee predictive power.

Accounting for Data Bias

As noted in our discussion of study bias, the use of SM data to predict real-world attributes
introduces a host of biases with which researchers must contend [64, 155, 167, 176, 190]. Not only
do SM users differ from the general population [64,155], but the content of SM posts also may not
reflect every aspect of the real world [167]. These issues have been widely discussed within the
literature and we broadly consider them under the name of SM data bias.

A recent Pew Research Center study [155] shows that, apart from age, general SM adoption is
largely commensurate with the growth of general Internet use among U.S. adults and
representative of the U.S. population by both gender and ethnicity. In a separate Pew Research
Center study [63] however, we find that average SM usage is not as consistent across
demographics on a per-platform basis. This is especially relevant when SM research is constrained
to a single platform (which we often find in past studies, as shown in the tables above). As of
2015, among all Internet users, women are better represented than men on Facebook, with 77% of
Internet-using women being on Facebook versus 66% of Internet-using men. Pinterest usage is
considerably more shifted toward female than male users (44% versus 16%). Conversely, men are
more likely to be found making use of discussion platforms such as Reddit or Digg, at 20% of male
versus 11% of female Internet users. Platforms like LinkedIn and Twitter see much closer
utilization rates between men and women, but exhibit much sharper socio-economic
disparities [63]. 41% of Internet users with an annual income over $75,000 use LinkedIn, while only
21% of the same income bracket use Twitter. In terms of race, 47% of African-American Internet
users utilize Instagram compared to 21% of white Internet users; this dichotomy is switched on
Pinterest, where 32% of white and 23% of African-American Internet users maintain accounts.

These population biases like age, gender, ethnicity, and socio-economic status are potentially
critical to researchers in election prediction and public health. Indeed, [75], appealing to the
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“Literary Digest” poll of 1936, highlights the dangers of heavily skewed sample populations when
attempting to make statements about election outcomes when the demographics of those who use
SM may differ significantly from the demographics of those who are likely to vote (e.g., seniors,
higher educational attainment). Some election studies have taken note of this: [191] observed that
although sampled demographics were heavily skewed, the authors make no attempt to correct this
bias and instead suggest the sample may be a good representative population of “opinion leaders”.
The work of [172] attempts to rectify known population skew using a weighting scheme to more
accurately reflect the true electorate population. Many studies [74, 179, 181], however, make no
mention of this potential bias.

Sampling strategies themselves can also be problematic. For research involving voluntary
data-sharing (e.g., [53, 54]), recent work has shown that self-reported Internet use is generally
unreliable [175]. Additionally, [170] show that not only do SM users’ network of real-world
interactions differ from their SM interactions, this difference is typically larger than that
perceived by the user. Keyword search methods of data sampling are subject to numerous
linguistic factors that lead to bias [190, 192]. The work of [182] for example, attempts to predict a
LinkedIn user’s willingness to volunteer with some apparent success, but their model is trained on
users who include “volunteer” in their profile in addition to all of those user’s LinkedIn
connections. The model is biased toward identifying not just volunteers, but volunteers who
choose to self-identify themselves as such. When attempting to construct friend-follower graphs,
connectivity-based sampling methods lead to unrepresentative sample populations while random
population sampling leads to erroneous connectivity traits [116].

And biases inherent to the data analyzed are not the only danger for SM researchers. Creating
a predictive model entails learning a relationship between the training data (from SM) and some
future real-world attributes. The advantage of SM data is often its large quantity, which lends
itself well to statistical modeling. At the same time, inappropriate use of statistical techniques can
easily lead to a problem known as overfitting [91]. Overfitting occurs when a statistical model
does not just learn the target relationship, but also captures the peculiarities and randomness
inherent to the data. An overfit model may perform well under k-fold cross validation, but real
accuracy will suffer when confronted with true hold-out validation data. For example, Google
FluTrends showed incredible promise in the early stages of research [45]. However, the model
exhibited classic symptoms of overfitting, where model performance suffered greatly once
confronted with new data [148].

Because an overfit model cannot necessarily be detected based solely on its results, researchers
must preemptively take measures to ensure their models will be able to generalize to novel data.
For instance, in predicting depression in SM users [53, 55] apply principle component analysis
(PCA) to determine relevant data features, which helps in preventing overfitting by eliminating
feature redundancy in the data. Overfitting can also be combated through the use of certain
model training schemes, as in [110] (via special choice of regularizers for outlier data) and
discussed by [174, 183] (via dimension reduction).

These concerns, however, are often only paid lip service and precautions are taken
infrequently [74,167]. For example, in [191], the authors indicate that 4% of users were responsible
for 40% of the sampled data but no caution was expressed for the possibility that the model might
overfit, learning predictions based on a small handful of users who may not generalize well to
other elections. In the case of Twitter, given that many studies search for specific keywords or
users with specific characteristics, features may be very highly correlated. In these cases, training
data itself can invite bias if the models that utilize them are reinforced by too much repetition.
Because SM modeling is almost entirely data-driven, overfitting should be a constant concern.

Although general SM data biases are a consistent issue in the field, there are a number of
possible methods researchers can use to ensure the robustness of their results. Demographic biases
should be quantified and accounted for whenever possible. Filtering based on keywords and user
characteristics are easy techniques to reduce data noise but introduce biases and should be used
sparingly, replaced by alternative noise reduction methods discussed in the previous section.
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Finally, model overfitting should be recognized as a serious possibility and avoided through the
use of certain model training schemes. Accounting for these biases not only leads to a better
understanding of underlying processes in SM, but also helps ensure models can be applied beyond
the data they were trained on.

Improving Generalizability

One of the biggest concerns for SM data biases is that results which are successful in one context
may fail in others. A good forecasting model should make accurate predictions not just on data
from today, but also on data from tomorrow. If a forecasting model can only be applied to data
from one particular location in one particular year, the model lacks the ability to forecast in a
useful fashion. To accomplish this, the model needs to have learned a relationship between SM
and real-world events which are unlikely to change over time. In essence, a model needs to be
robust enough to generalize to novel data, not knowing ahead of time what that new data might
look like. Failure to generate robust predictions might lead to poor performance whenever major
changes in the world occur, often exactly when accurate predictions are most valuable. The ability
to generalize findings should thus be of primary interest to researchers attempting to forecast the
future, and while data biases and overfitting are two factors which can lead to generalization
issues they are far from the only concerns.

The most basic cause for model generalization problems comes from a mismatch between the
data a model is trained with and the data which will eventually be used in forecasting. As noted
previously, it is not always possible to know what this mismatch might entail, but there are a
variety of common issues that researchers can attempt to address. In particular, we note cases
where poor performance is obtained due to usage of data which is too narrow in scope, where
models are not evaluated across multiple possible domains of interest, and where learning occurs
with data that comes from a narrow window in time.

Learning from a very narrow set of data is a large problem within the field of SM research. By
narrow, we mean simply that the data may be insufficiently diverse to allow a model to perform
well at a wide range of conditions. For instance, consider the case of nowcasting user political
preferences on Twitter. If the goal is to detect preferences for all users, then the methodology
of [197] would be inappropriate. In their study, they trained using a small set of users who had
self-identified as either Democrats or Republicans, which may not be representative of general
users on Twitter. Similarly, the methods of [56] in forecasting protest volume rely on a set of
hashtags which were identified after the fact by mining Wikipedia pages. Applying this work to
future events would require additional methods for automatically identifying the sets of hashtags
relevant to an event, but [190] warn that any analysis based on filtering for hashtags or keywords
is likely to produce a dataset with particularities specific to those keywords which may not be
generalizable to future events.

The possibility of very fragile models based on keywords alone is demonstrated in [191]. They
report that the simple percentage of mentions on Twitter for political parties in Germany reflects
the share of the vote each party will win. While a very exciting premise, as [99] point out, the
results are not generalizable and rely critically on excluding the German “Pirate Party”, which
was mentioned on Twitter that year more than any other political party yet garnered only 2.1% of
the vote. Changing the days of data collection likewise had major effects on the election forecast,
indicating poor robustness.

One way for researchers to overcome these issues of narrow data involves learning from data
over multiple SM platforms. This strategy has been used very successfully in the area of user
demographic nowcasting, where relationships between user demographics and SM behavior might
vary from platform to platform. For instance, [173] infer a user’s age and gender based on the
words they use, learning from Twitter, Facebook, or blogs either separately or together. A model
trained on Facebook alone will perform well on data from Facebook, but does much more poorly
on data from other sources. Models trained on a variety of sources may perform more poorly on
data from any individual SM platform, but the results are more robust to changes in data source.
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In the work of [96, 182] an argument is made that integrating information from multiple SM
platforms increases robustness of results and further has the benefit that information from
different platforms is often complementary. User profiles on LinkedIn, for instance, generally
contain information on educational achievement while Facebook users are much more likely to list
their gender [182].

Text-based geolocation from data on a variety of SM platforms and languages is likewise
explored by [208]. Because their corpora are not equatable, they cannot learn over all the data at
once, but their results demonstrate the utility of including more than one evaluation. They posit
two models, which perform roughly equally well on data from Twitter. If they had only examined
Twitter data, as in most studies on SM forecasting, they might reasonably have chosen the
simpler of the two models. Unfortunately, this simpler variant performs much worse on data from
Wikipedia and Flickr, a finding which would not have been recognized without investigating
multiple data sources. A similar case of evaluating on multiple data sources can be found in
detecting and forecasting depression [52, 54, 55, 57, 188]. While these studies differ slightly in their
methods, they make use of the same basic text features [153]. The methodology has found
positive results using Twitter [52,55,188], Facebook [54], and Reddit [57] and while most work has
been on English-speaking SM users, [188] validate the findings for Japanese-speaking users as well.
The method has found success in detecting depression [55], but also for forecasting postpartum
depression [52, 54] and forecasting whether a depressed individual will start thinking about
suicide [57]. By validating the methodology on such a wide variety of data sources, researchers can
feel more confident that the same methods will be useful when applied to similar prediction tasks.

Incorporating non-SM data into forecasting models can also be a useful tool for increasing
model robustness. By linking the model to data which is often less noisy and whose relation to
prediction is better understood, studies which incorporate non-SM data are often able to achieve
better forecasting performance. This practice is more common in some areas than in others. For
instance, to detect adverse drug effects researchers make use of extensive domain-specific
knowledge about drug side effects from non-SM databases [18, 71, 178, 214]. Incorporating non-SM
data in this case makes side effect identification much simpler, but does not preclude models from
detecting side effects which were previously unknown [71,214], an important step for public health
researchers. Similarly, non-SM data can be used to enhance demographic prediction by matching
unknown users against known demographic patterns [50, 51], geolocation by modeling
population-level traffic patterns [201], or by mapping place names to locations [177] and election
prediction by factoring in variables known to affect election outcomes [206].

Lastly, in many cases it is important that forecasting models be trained on data that is
representative of the timescale being used for prediction. For instance, [109] use tweets from five
cities in the UK to predict rainfall. Because they only have one year’s worth of data, the model is
always trained on 10 months and asked to predict rainfall for the remaining two. Even with such
limited training data, the model does quite well, with the notable exception of predicting the
weather in July, which is both a summer month, with individuals tweeting about sunny, outdoor
activities, but was also the second most rainy month in the dataset. If training had utilized a
longer timespan of data, such regular annual patterns could be forecast more easily. The same can
be said of election outcome predictions, where training typically occurs for a single set of
elections [27, 38, 164, 172, 179, 181, 191], which may or may not be representative of other elections
past and future. Studies making use of data from multiple elections will be necessary in order to
make statements regarding election forecasting that might be more reliable.

In summary, researchers should constantly be aware that decisions they make regarding
training data and evaluation are likely to have a considerable impact on their ability to forecast
for particular use cases. We advise researchers to make use of their domain expertise in order to
determine what aspects of their model are most in need of generalization. Training using data
from multiple SM platforms may be wise for a task such as protest forecasting where protesters
may in future adopt a platform other than Twitter, but may be unwise for a task where only a
single platform is required and is unlikely to be replaced. Training using data over an extended
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period of time may be appropriate when temporal patterns are relevant as with rainfall, but may
be inappropriate if historical patterns have changed so dramatically as to be irrelevant. Although
there is no one solution to problems of model generalization, future researchers would do well to
consider how the general guidelines presented here might apply for their own use cases.

Incorporating Domain-Specific Knowledge

Research into SM forecasting has largely found success thanks to robust statistical models which
take advantage of large quantities of SM data [176]. As we mentioned previously, applying
canonical machine learning models can help researchers overcome the tremendous noise in SM
data, but leaves open the possibility of overfitting, especially when data of only one type is used.
Careful choice of data sources, model techniques to account for biases, and evaluation on multiple
data sets can all help to overcome some of the limitations to these types of models. An additional
avenue which has seen great success in many areas of SM prediction is the use of domain-specific
knowledge in order to augment statistical models.

By domain-specific knowledge, we mean here the knowledge and theory specific to a particular
task or field which has been validated by existing research. By incorporating patterns that are
already known, researchers can point their statistical models in the right direction. Not only can
this improve model results, but it can also help to ensure generalizability. For instance, consider
the detection and forecasting of depressive symptoms in SM users. A great deal is known from
psychology about various types of depression and this knowledge has largely been incorporated
into existing predictive research [52, 54, 55, 57, 188]. In addition, the choice of ground-truth
data—study volunteers and random control data in the case of [52, 54, 55]—and how to manage
the task of validation—confirmation bias and self-reporting—is well understood. Although all of
this work relies on relatively naive text analysis [153], research has been generalized well across
datasets. Knowledge from psychology identifies the underlying behaviors which are linked to
depression and which are expressed in SM usage. Because researchers are able to take advantage
of this knowledge, they can achieve reasonable accuracy even with naive methods that do not take
advantage of the scale of SM data.

In the case of depression, domain-specific knowledge manifests itself in terms of choosing
model features which are linked to the target prediction of interest. Domain knowledge can also
be incorporated into the structure of the forecasting model itself. Much work in geolocation now-
and forecasting is built upon the knowledge that individuals tend to revisit locations they have
been to before [201]. This fails, however, to take advantage of the patterns between individuals
which exist. Results for SM users with little historical data can be improved by assuming they are
similar to the general population [221]. The best results in the field come from models which
specifically attempt to model what is theoretically known as homophily, individuals who associate
with one another are more likely to share travel patterns [11, 177, 219]. Finding ways of
incorporating sociological knowledge has allowed researchers to greatly improve location forecasts
in spite of the fact that most location information in SM is quite sparse [40] and the fact that
physical, daily interaction networks and virtual SM interaction networks differ greatly from one
another [65, 170].

Work in demographics prediction from [1, 196] likewise use a theory-driven approach, using
social influence theory in order to construct scalable network features for accurately detecting user
preferences on Twitter. Indeed, the authors note that many classical machine learning models,
such as logistic regression, fail to capture interrelations between users, and instead represent each
user or tweet as an independent instance within the data. However, this clearly glosses over the
network structure between Twitter users following and mentioning one another. The authors
leverage this domain knowledge by assuming that users that follow one another likely have similar
interests, and more specifically that influential users can be used to identify sub-groups of users
that likely have similar interests through following or other interactions.

Failing to incorporate domain-specific knowledge or capture known or even hypothesized
dynamics within the physical system of interest has been blamed for a growing number of bad
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outcomes in SM prediction research. Likely the most noteworthy example is Google Flu
Trends [111]. Although using relative search volume for symptoms of influenza and
influenza-like-illness seems logical, there is little to no theoretical basis for this relationship.
Indeed, following the same logic in terms of search volume, stock market prediction faced the
same problem when [14] showed that the words “colour” and “restaurant” were the second and
third best search term predictors of stock market movements. The authors had no theoretical
basis on which to conclude that these results could be valid beyond what naive data analysis had
shown them. Even the best predictor, “debt”, was not entirely clear to the authors as to why it
performed so well.

Conclusion

In this systematic literature review we examine the ability of SM data to forecast real world events
and characteristics across a variety of disciplines. We have focused our review toward answering
two questions: Can SM be used to predict the future, and if so, how is this best accomplished?

First, the good news: in addressing our first research question, we find that SM data has been
used to make accurate forecasts across all of the disciplines examined. Additionally, topics that
can be shown to be directly relevant to SM users and how they interact with SM make more
successful predictions, such as user location, user demographics, and civil unrest. The bad news:
in addressing our second research question, we detail four major pitfalls which have made SM
prediction difficult. Noisy data, SM data biases, lack of generalizability, and difficulty
incorporating domain-specific knowledge and theory lead to a fundamentally complex prediction
task.

For each of these pitfalls, we examined the literature to find papers which best overcame these
difficulties identifying best practices. These include, but are not limited to 1) carefully filtering
out irrelevant information, such as by learning appropriate keywords [13], 2) incorporating known
SM data biases by, for example, factoring in the effect of skewed demographics, 3) avoiding
overfitting models to ensure predictions will be robust to future data by only incorporating
relevant data features during model training such as in [54], as in [172], and 4) appealing to
domain knowledge and theory, potentially through validation studies like [170]. By following these
best practices, future researchers will better be able to make use of SM data, avoiding mistakes in
past research which have led to poor performance.
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